Greedy Algorithms

Optimization problem: find the best way to do something.
- E.g. match up two strings (LCS problem).

Search techniques look at many possible solutions.
- E.g. dynamic programming or backtrack search.

A greedy algorithm
- Makes choices along the way that seem the best.
- Sticks with those choices.

For some problems, greedy approach always gets optimum.
For others, greedy finds good, but not always best.
- If so, it’s called a greedy heuristic or approximation.

For still others, greedy approach can do very poorly.
The problem of giving change

Vending machine has huge supply of quarters, dimes and nickels.

Customer needs \(N \) cents change (\(N \) is multiple of 5).

Machine wants to give out few coins as possible.

Greedy approach:

\[
\begin{align*}
\text{while } (N > 0) \{} \\
\quad \text{give largest denomination coin } \leq N; \\
\quad \text{reduce } N \text{ by value of that coin;}
\end{align*}
\]

Aside: Using division, it could make decisions faster.

Does this return the fewest number of coins?

More on giving change

Thm: Greedy algorithm always gives minimal \# of coins.

Proof:

- Optimum has \(\leq 2 \) dimes.
 - Quarter and nickel better than 3 dimes.
- Optimum has \(\leq 1 \) nickel
 - Dime better than 2 nickels.
- Optimum doesn't have 2 dimes + 1 nickel
 - It would use quarter instead.
- So optimum & greedy have at most $0.20 in non-quarters.
 - That is, they give the same number of quarters.
- Optimum & greedy give same on remaining \(\leq $0.20 \) too.
 - Obviously.
More on giving change

Suppose we run out of nickels, put pennies in instead.

- Does greedy approach still give minimum number of coins?

Formally, the Coin Change problem is:

Given k denominations d_1, d_2, \ldots, d_k and given N,
find a way of writing $N = i_1 d_1 + i_2 d_2 + \ldots + i_k d_k$ such
that $i_1 + i_2 + \ldots + i_k$ is minimized.

“Size” of problem is k.

Is the greedy algorithm always a good heuristic?

That is, does there exist a constant c s.t. for all instances
of Coin Change, the greedy algorithm gives at most c times
the optimum number of coins?

How do we solve Coin Change exactly?

Coin Change by Dynamic Programming

Let $C(N) = \min \#$ of coins needed to give N cents.

Detail: $C(0) = 0$ and, for $N < 0$, $C(N) = \infty$.

Optimal substructure: After an optimal solution gives
customer one coin, the remaining change must be
given optimally.

So $C(N) = 1 + \min \{ C(N-d_1), C(N-d_2), \ldots, C(N-d_k) \}$
Pennies, Dimes and Quarters

Recall: \(C(N) = 1 + \min \{ C(N-d_1), C(N-d_2), \ldots, C(N-d_k) \} \)

\[
\begin{array}{cccccccccccc}
0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 \\
0 & 5 & & & & & & & & & & & & & \\
\end{array}
\]

\[
\text{give 5 pennies} \quad \text{give dime} \\
\min \{5+5, 0+1\} = 1
\]

Pennies, Dimes and Quarters

Recall: \(C(N) = 1 + \min \{ C(N-d_1), C(N-d_2), \ldots, C(N-d_k) \} \)

\[
\begin{array}{cccccccccccc}
0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 \\
0 & 5 & 1 & 6 & & & & & & & & & & & \\
\end{array}
\]

\[
\text{give 5 pennies} \quad \text{give dime} \\
\min \{1+5, 5+1\} = 6
\]
Pennies, Dimes and Quarters

Recall: \(C(N) = 1 + \min \{ C(N-d_1), C(N-d_2), \ldots, C(N-d_k) \} \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- give 5 pennies
- give dime
- give quarter

Pennies, Dimes and Quarters

Recall: \(C(N) = 1 + \min \{ C(N-d_1), C(N-d_2), \ldots, C(N-d_k) \} \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- give 5 pennies
- give dime
- give quarter
Complexity of Coin Change

Greedy algorithm (non-optimal) takes $O(k)$ time.

Dynamic Programming takes $O(kN)$ time.

- This is NOT necessarily polynomial in k.

 • Better way to define “size” is the number of bits needed to specify an instance.

 • With this definition, N can be almost 2^size.

 • So Dynamic Programming is exponential in size.

- In fact, Coin Change problem is NP-hard.

 • So no one knows a polynomial-time algorithm for it.

Linear Partition Problem

Given a list of positive integers, s_1, s_2, \ldots, s_N, and a bound B, find smallest number of contiguous sublists s.t. each sum of each sublist $\leq B$.

I.e.: find partition points $0 = p_0, p_1, p_2, \ldots, p_k = N$ such that for $j = 0, 1, \ldots, k-1,$

$$\sum_{i=p_j+1}^{p_{j+1}} s_i \leq B$$

Greedy algorithm:

Choose p_1 as large as possible.

Then choose p_2 as large as possible. Etc.
Greedy is optimal for linear partition

Thm: Given any valid partition $0 = q_0, q_1, ..., q_k = N$, then for all j, $q_j \leq p_j$. (The p_j's are greedy solution.)

Proof: (by induction on k).

Base Case: $p_0 = q_0 = 0$ (by definition).

Inductive Step: Assume $q_j \leq p_j$.

We know $\sum_{i=q_j+1}^{q_{j+1}} s_i \leq B$ (since q's are valid).

So $\sum_{i=p_j+1}^{p_{j+1}} s_i \leq B$ (since $q_j \leq p_j$).

So $q_{j+1} \leq p_{j+1}$ (since Greedy chooses p_{j+1} to be as large as possible subject to constraint on sum).

Variant on Linear Partitioning

New goal: partition list of N integers into exactly k contiguous sublists to so that the maximum sum of a sublist is as small as possible.

Example: Partition $< 16, 7, 19, 3, 4, 11, 6 >$ into 4 sublists.

- We might try $16+7, 19, 3+4, 11+6$. Max sum is $16+7=23$.

Try out (at board):

- Greedy algorithm: add elements until you exceed average.
- Divide-and-conquer: break into two nearly equal sublists.
- Reduce to previous problem: binary search on B.
- Dynamic programming.
Scheduling Unit time Tasks

Given N tasks (N is problem size):
- Task i must be done by time \(d_i \).
- Task i is worth \(w_i \).

You can perform one task per unit time. If you do it before its deadline \(d_i \), you get paid \(w_i \).

Problem: Decide what to do at each unit of time.

- Aside: This is an off-line scheduling problem: You know entire problem before making any decisions.
- In an on-line problem, you get tasks one-at-a-time, and must decide when to schedule it before seeing next task.
- Typically, it’s impossible to solve an on-line problem optimally, and the goal is to achieve at least a certain % of optimal.

Glossary (in case symbols are weird)

subseteq \(\subseteq \) \ element of \(\in \) \ infinity \(\infty \)
forall \(\forall \) \ there exists \(\exists \)
big theta \(\Theta \) \ big omega \(\Omega \) \ summation \(\sum \)
\geq \(\geq \) \ about equal \(\cong \)
\neq \(\neq \) \ natural numbers \(\mathbb{N} \)
\Reals \(\mathbb{R} \) \ rationals \(\mathbb{Q} \) \ integers \(\mathbb{Z} \)