Dictionaries

Dynamic Set: A set that can grow & shrink over time.
Example - priority queue. (Has “Insert” and “Extract-Max”.)

Dictionary:

Elements have a key field (and often other satellite data).
Supports the following operations (S is the dictionary, p points to an element, k is a value that can be a key.)

- Insert(S, p) - Adds element pointed to by p to S.
 p.key must have already been initialized.
- Search(S, k) - Returns a pointer to some element with key field k, or NIL if there are none.
- Delete(S, p) - Removes element pointed to by p from S.
 (Note: Insert & Delete don’t change p or what it points to.)

Is a priority queue a dictionary? Or Vice versa??
Details we won’t bother with...

- Can two different elements have the same key?
- What happens if you insert an element that is already in the dictionary?

Any choice is OK – but it affects the implementation and unimportant details of the analysis.

Hash table implementation

U - set of possible keys
I - indices into an array T (I usually is much smaller than U)
A hash function is any function h from U to I.

Hash table with chaining (i.e. linked list collision resolution):
Each element of T points to a linked list (initially empty).
List T(i) holds pointers to all elements x s.t. hash(x.key) = i.
Synonyms

Two elements are synonyms if their keys hash to the same value.

Synonyms in a hash table are said to collide.

Hash tables use a collision resolution scheme to handle this.

Some collision resolution methods:
- Chaining (what we just saw)
- T(i) could point to a binary tree.
- Open addressing: T(i) holds only one element.
 - must search T(i), T(i+1), ... until you hit an empty cell.
 - DELETE is difficult to implement well.

We’ll stick to chaining.

Speed of Hashing

Given sequence of n requests on empty dictionary

Each request is an Insert, Search, or Delete.

Let k_i be key involved in request i, and $b_i = h(k_i)$.

Time of Request $i < c (1 + \text{number of synonyms of } i \text{ in table}).$

$< c (\text{number of requests } j \text{ s.t. } b_i = b_j).$

- This overcounts when $j > i$.
- and when j isn’t an “insert”.
- and when j is already in table when j is inserted.
- and when element is deleted before request i.

- Define $X_{ij} = 1$ if $b_i = b_j$, and $X_{ij} = 0$ otherwise.
- Then $\text{Time(request } i) < c \sum_{j} X_{ij}$
Complexity Analysis

How should we choose the size of T?

If $|T| \ll n$, there'll be lots of collisions.
If $|T| \gg n$, it wastes space.

So let's make hash table of size n.

Recall: $\text{Time}(\text{request } i) < c \sum_j X_{ij}$.

so $\text{Time (all } n \text{ requests}) < c \sum_i \sum_j X_{ij}$.

Thus, expected time $< E(c \sum_i \sum_j X_{ij}) = c \sum_i \sum_j E(X_{ij})$.

If we knew $E(X_{ij}) = 1/n$, we'd know that the average case complexity of processing n requests is $O(n)$.

When is $E(X_{ij}) = 1/n$??

• Assume keys are uniformly distributed:
 - If we make sure that h maps the same number of keys to each index, then the indices will also be uniformly distributed.
 • Easy. For instance, $h(x) = x \mod |T|$
 - Is "uniformly distributed keys" reasonable?
When is $E(X_{ij}) = 1/n$??

- Assume *indices* are uniformly distributed:
 - In other words, assume the hash function acts like a random number generator.
 - This is a “blame it on someone else” assumption.
 - A standard hash function is: for some well-chosen magic real number a s.t. $0 < a < 1$,
 - Don Knuth says, use $a = .6180339887$

 given an integer x, we compute $h(x)$ by:
 - multiply x by a.
 - take result modulo 1 (i.e., keep only the fractional part).
 - multiply this result by $|T|$.

Can WE control the randomization?

- We’d like a “probabilistic” result like the previous “average case” one.

- We can choose a hash function randomly.
 - Sample space = set of hash functions to choose from.

- To ensure $E(X_{ij}) \leq 1/n$, we want:
 - A set of hash functions H from U to $\{0, ..., n-1\}$,
 - ... such that for all x, y in U (with $x \neq y$),
 - ... the fraction of $h \in H$ s.t. $h(x)=h(y)$ is $\leq 1/n$.
 - actually, to get probabilistic time $O(n)$ for n requests, we only need that this fraction be c/n for some c.
Universal hashing

Def: A set of hash functions H from U to $\{0, ..., n-1\}$ is universal (or e-universal) if,
- for all x, y in A (with $x \neq y$),
- the fraction of $h \in H$ s.t. $h(x) = h(y)$ is $\leq 1/n$ (or $\leq e$)

• So the definition of universal is exactly what’s needed to get probabilistic time $O(n)$.
• Note that H only needs to do a good job on pairs of keys.
• The book describes one universal set of hash functions (based on $h_{ab}(x) = ax + b \pmod{p}$).
 This is similar to Knuth’s function with a randomly-chosen multiplier, but slightly different.

Polyhash

The world’s best hash function (or so I claim):
 Allows you to hash long keys efficiently.
 Performance guaranty degrades gently as keys get longer.

Choose a finite field, e.g. integers modulo a prime.
 Note $p = 2^{31} - 1$ is prime, and \pmod{p} is easy to compute.

For each x in the field, we’ll define $h_x(key)$.

Write key as blocks (e.g. halfwords): $key = a_0 \ a_1 \ ... \ a_{s-1}$

$h_x(key) = a_0 + a_1 x + a_2 x^2 \ ... \ + a_{s-1} x^{s-1}$.

Polyhash is (s/p)-universal.
Polyhash is \((s/p)\)-universal

Given \(a \neq b\) in \(U\), let \(a = a_0 \ a_1 \ldots a_{s-1}\) & \(b = b_0 \ b_1 \ldots b_{s-1}\).

For any \(x\) in the field, \(h_x(a) = h_x(b)\) if and only if
\[
a_0 + a_1 x + \ldots + a_{s-1} x^{s-1} = b_0 + b_1 x + \ldots + b_{s-1} x^{s-1},
\]

i.e., \((a_0 - b_0) + (a_1 - b_1)x + \ldots + (a_{s-1} - b_{s-1}) x^{s-1} = 0\).

This is a degree \(s-1\) (or less) polynomial.

It is not the “all zero” polynomial.

Therefore, it has at most \(s-1\) solutions.

(Proof is the same as for real or complex numbers.)

Thus, \(a\) & \(b\) collide for < \(s\) of the \(p\) functions \(h_0, h_1, \ldots, h_{p-1}\).

QED

Implementation details
(assumes 64-bit integer arithmetic)

- **Computing \(k\) mod \(2^{31-1}\):**
 - Write \(k = 2^{31} q + r\). (Can be done with shifting.)
 - Note that \(2^{31} \equiv 1 \pmod{2^{31-1}}\).
 - Thus \(k \equiv q + r \pmod{2^{31-1}}\).
 - This may still be bigger than \(2^{31-1}\).
 - It may not matter, or you can repeat.

- **Computing polyhash via Horner’s rule:**
 \[
a_0 + a_1 x + \ldots + a_{s-1} x^{s-1} = a_0 + x (a_1 + x (a_2 + \ldots + x(a_{s-1}) \ldots))
 \]
 So for each chunk of \(a\), you multiply - add - mod.
More polyhash details

• Polyhash can be used on variable-length strings.
 - Stop Horner’s rule computation at end of string (rather than going out all the way to s).
 - Beware! There’s a SUBTLE BUG.
 • What is it? How do you fix it??

• Polyhash when $|T| < 2^{31} - 1$.
 - Use polyhash to reduce length-s string to 31 bits.
 - Reduce result to $|T|$ using a universal function.
 - Result: $E(X_{ij}) < s/2^{31} + 1/|T|$.
 • For typical parameters (e.g. $|T| = 2^{20}$ and strings are no longer than 2048 bytes long) this gives $E(X_{ij}) < 2/|T|$.

Summary

Hash tables have average time $O(n)$, worst-case $O(n^2)$ time to process any sequence of n dictionary requests (starting with empty set).

Universal hashing says (in theory, at least):

Each time you run the algorithm, after the problem instance has been chosen, choose a random function from a universal set.

Then the expected run time will be $O(n)$.

There are no “bad inputs”.

In practice, hash function is usually chosen first.
Extendible Hashing

• Hashing is $O(1)$ per request (expected), provided the hash table is about the same size as the number of elements.

• Extendible Hashing allows the table size to adjust with the dictionary size.
 - A directory (indexed by first k bits of hash value) points to buckets.
 • k changes dynamically (but infrequently).
 - Each bucket can hold a fixed sized array of elements.
 • Use your favorite method to search within a bucket.
 • When it exceeds the max, the bucket is split in two.
 • The directory is updated as needed.
 • Occasionally, directory needs to double in size (and $k \leftarrow k+1$).

Directory and Buckets
Splitting a bucket

Insert element hashing to 10011 causes bucket split

Doubling the directory

Inserting two elements in 010 bucket causes split & directory doubling
Extendible hashing analysis (handwaving version)

• Assumptions:
 - takes 1 time unit to find something in a bucket.
 - takes \(b \) time units to split a bucket (\(b = \) bucket size).
 - split buckets are each about half full.
 - empty buckets are deleted & directory adjusted.

• Any sequence of \(n \) Inserts and Deletes takes time at most \(3n \).
 - Each request comes with three 1-unit “coupons”.
 - One is used to “pay” for finding the item.
 - Remaining two are “deposited” in the bucket.
 • Half-full bucket on creation will have \(b \) coupons when split.
 • This is enough to “pay” for splitting.

Extendible handwaving analysis

We could (but won’t) improve this analysis:

“Each bucket gets half” assumption could be “\(1/4 \) – \(3/4 \)”.
 • Analysis would use 5 coupons per request.

Split is only rarely worse than 25-75.
 • This requires some randomness assumptions.
 • Buckets can buy “insurance” against bad breaks.

We could account for shrinking too.
 • Paid for by coupons collected on Delete’s.

And we can impose a “tax” to pay for resizing the directory.
 • Which happens only rarely.

This is an example of amortized analysis, using “accounting method” (Chapter 17).
Extendible hashing in practice

- Databases (e.g. 10^9 elements) stored on disk:
 - Bucket should take one page (e.g. 8KB).
 - Bucket might hold satellite info too.
 - Even with 10^9 elements, directory stays in memory
 - Assuming accesses are frequent.
 - (and if they aren't, who cares?)
 - So there's only one page miss per request.
 - Cost of searching in page is insignificant.

- DRAM-sized hash tables (e.g. 10^6 elements):
 - Bucket can be size of cache line (e.g. 128 Bytes).
 - Directory likely to be in cache.