Where are we

• Traditional (RAM-model) analysis: Heapsort is better
 - Heapsort worst-case complexity is $\Theta(n \log n)$
 - Quicksort worst-case complexity is $\Theta(n^2)$.
 • average-case complexity should be ignored.
 • probabilistic analysis of randomized version is $\Theta(n \log n)$

• Yet Quicksort is popular.

• Goal: a better model of computation.
 - It should reflect the real-world costs better.
 - Yet should be simple enough to perform asymptotic analysis.
2-level memory hierarchy model (MH₂)

Data moves in “blocks” from Main Memory to cache.
 - A block is b contiguous items.
 - It takes time b to move a block into cache.
 - Cache can hold only b blocks.
 Least recently used block is evicted.

Individual items are moved from Cache to CPU.
 - Takes 1 unit of time.

For asymptotic analysis, we want b to grow with n
 - b = n^{1/3} or n^{1/4} are plausible choices

<table>
<thead>
<tr>
<th></th>
<th>block size = b (Bytes)</th>
<th>cache size = b² (Bytes)</th>
<th>transfer (cycles)</th>
<th>memory = n (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory = DRAM</td>
<td>2^6 - 2^8</td>
<td>2^{13} - 2^{20}</td>
<td>2^5 - 2^7</td>
<td>2^{26} - 2^{30}</td>
</tr>
<tr>
<td>Cache = SRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory = disk</td>
<td>2^7</td>
<td>2^{14}</td>
<td>2^7</td>
<td>2^{28}</td>
</tr>
<tr>
<td>Cache = Dram</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b = n^{1/4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b=n^{1/3}</td>
<td>2^{13}</td>
<td>2^{26}</td>
<td>2^{13}</td>
<td>2^{39}</td>
</tr>
</tbody>
</table>
Cache lines of heap (b=8, n=511, h=9)

- 6 levels, 8 blocks

A worst-case Heapsort instance

Each Extract-Max goes all the way to a leaf.

Visits to each node alternate between left and right child.

Actually, for any sequence of paths from root to leaves, one can create example.

Construct starting with 1-node heap
MH₂ analysis of Heapsort

• Assume \(b = n^{1/3} \).
 - Similar analysis works for \(b = n^a, 0 < a < \frac{1}{2} \).

• Effect of LRU replacement:
 - First \(n^{2/3} \) heap elements will "usually" be in cache.
 • Let \(h = \lfloor \log n \rfloor \) be height of the tree.
 • These elements are all in top \(\lceil (2/3)h \rceil \) of tree.
 - Remaining elements won’t usually be in cache.
 • In worst case example, they will never be in cache when you need them.
 • Intuition: Earlier blocks of heap are more likely to be references than a later one. When we kick out an early block to bring in a later one, we increase misses later.

MH₂ analysis of Heapsort (worst-case)

• Every access below level \(\lceil (2/3)h \rceil \) is a miss.

• Each of the first \(n/2 \) Extract-max’s “bubbles down” to the leaves.
 - So each has at least \((h/3) - 1 \) misses.
 - Each miss takes time \(b \).

• Thus, \(T(n) > (n/2)((h/3) - 1) b \).
 - Recall: \(b = n^{1/3} \) and \(h = \lfloor \log n \rfloor \).

• Thus, \(T(n) \) is \(\Omega(n^{4/3} \log n) \).

• And obviously, \(T(n) \) is \(O(n^{4/3} \log n) \).
 - Each of \(cn \log n \) accesses takes time at most \(b = n^{1/3} \).
 (where \(c \) is constant from RAM analysis of Heapsort).
Quicksort \mathcal{MH}_2 complexity

- Accesses in Quicksort are sequential
 - Sometimes increasing, sometimes decreasing
- When you bring in a block of b elements, you access every element.
 - Not 100% true, but I'll wave my hands
- We take b time to get block for b accesses
- Thus, time in \mathcal{MH}_2 model is same as RAM.
 - $\Theta(n \lg n)$

Bottom Line: MH2 analysis shows Quicksort has lower complexity than Heapsort!