Your turn ...

For one of the following recursion trees ...

1. \(T(n) = 3T(n/4) + 5n \) for \(n = 256 \), \(T(1)=5 \)
2. \(T(n) = 2T(n/2) + 5n \) for \(n = 32 \), \(T(1)=5 \)
3. \(T(n) = 3T(n/2) + 5n \) for \(n = 32 \), \(T(1)=5 \)
4. \(T(n) = 3T(n/2) + n^2 \) for \(n = 32 \), \(T(1)=1 \)
5. \(T(n) = 4T(n/2) + n^2 \) for \(n = 32 \), \(T(1)=1 \)

...figure out the total “conquer time” (the last term) needed at each level.

Answer should be a sequence of 5 or 6 numbers.
Recursion Tree for \(T(n) = aT(n/b) + cn \)

- 1 node at depth 0
- \(a \) nodes at depth 1
- \(a^2 \) nodes at depth 2
- \(a^{\log_b n} \) nodes at depth \(\log_b n \)

\[
T(n) = cn + ac(n/b) + a^2c(n/b^2) + \ldots + a^{\log_b n}c(n/b^{\log_b n})
\]
\[
= cn \left(1 + \frac{a}{b} + \left(\frac{a}{b}\right)^2 + \ldots + \left(\frac{a}{b}\right)^{\log_b n} \right).
\]

How does your tree grow?

What’s \(T(n) = cn \left(1 + \frac{a}{b} + \left(\frac{a}{b}\right)^2 + \ldots + \left(\frac{a}{b}\right)^{\log_b n} \right) \)?

The largest term of a geometric series “dominates”.

- If \(a/b < 1 \), the first term dominates
 - Thus, \(T(n) \in \Theta(n) \).
- If \(a/b > 1 \), the last term dominates
 - So \(T(n) \in \Theta(n(a/b)^{\log_b n}) = \Theta(n(a^{\log_b n}/b^{\log_b n})) = \Theta(n(a^{\log_b n}/n)) = \Theta(a^{\log_b n}) = \Theta(n^{\log_b a}) \).
- If \(a/b = 1 \), all terms are equal. There are \(\log_b n \) terms.
 - So \(T(n) \in \Theta(n \log_b n) = \Theta(n \log n) \).
Where are we ??

In Divide & Conquer ... if \(T(n) = aT(n/b) + cn \),
(i.e. if you can combine pieces with linear work)

then there are three cases:

if \(a>b \), then \(T(n) \) is \(\Theta(n^\log_b a) \) (there are so many tiny
subproblems, they dominate the time)

if \(a=b \), then \(T(n) \) is \(\Theta(n \log n) \) (just like merge sort)

if \(a<b \), then \(T(n) \) is \(\Theta(n) \) (big step is most expensive)

What if combining takes \(f(n) \) work??

In Divide & Conquer ... if \(T(n) = aT(n/b) + f(n) \),
then three corresponding cases are:

1. The tiny subproblems dominate the run time
 - Happens when \(f(n) < c a f(n/b) \) for some \(c<1 \) and all \(n \)
 - If so, \(T(n) \in \Theta(a^{\log_b n}) = \Theta(n^\log_b a) \).

2. All levels take about the same time
 - Happens when \(f(n) \) is \(\Theta(a^{\log_b n}) \).
 - If so, \(T(n) = \Theta(f(n) \log n) \).

3. Big step is most expensive
 - Happens when \(f(n) > c a f(n/b) \) for some \(c>1 \) and all \(n \).
 - If so, \(T(n) = \Theta(f(n)) \).
Previous slide is “Master Method”

Slight differences:

Book’s condition on case 1, “f(n) is $O(n^{\log_b a - \epsilon})$”, is slightly more general.

It allows f(n) to be less uniform.

Case 2 – remember $a^{\log_b n} = n^{\log_a b}$.

Book has (unnecessary) extra condition in case 3

“f(n) is $\Omega(n^{\log_a b + \epsilon})$” is implied by “f(n) > c a f(n/b), c>1”

Master method can “interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$”

Other recurrences

Master Method doesn’t always apply:

What if, in MergeSort, we divided 75% - 25% ?

$T(n) = T(3n/4) + T(n/4) + c n$.

Or we divided into 1000 and n-1000 sized pieces?

$T(n) = T(1000) + T(n-1000) + cn \ (for \ n>1000)$.

Or consider:

$T(n) = 2T(n/2) + n \log n$.