Lecture 15

Solving systems of equations:
LU Decomposition

Announcements

• All 16 nodes are running on Valkyrie
• Try running on 16 processors for your assignment: 10% extra credit
• Report the sorting time for worst case input using bucket sort, and we’ll post it on a scoreboard: send email to cs160x@valkyrie
• Homework #4 returned today
 – Will be explained in detail in section
 – Feedback: use pseudo code to clarify explanations and comment your code carefully
Linear systems of equations

- A common application scientific computation is to solve a system of linear equations
- These often result from the discretization of a differential equation
- Consider the linear system of 2 equations in 2 unknowns
 \[\begin{align*}
 x \text{ and } y \\
 (1) \quad 2x + 3y &= 8 \\
 (2) \quad 3x + 2y &= 7
 \end{align*} \]
- Rewriting equation (1)
 \[x = \frac{(8-3y)}{2} \]
- Substituting \(x \) into the LHS of equation (2)
 \[\frac{3(8-3y)}{2} + 2y = \frac{(24-9y)}{2} + 2y \]
 \[\Rightarrow (24-9y) + 4y = 14 \Rightarrow 10 = 5y \Rightarrow y = 2 \]
- Back substituting the value of \(y \) into equation (1)
 \[x = 1 \]

Matrix vector equations

- Our linear system of 2 equations in 2 unknowns …
 \[\begin{align*}
 2x_1 + 3x_2 &= 8 \\
 3x_1 + 2x_2 &= 7
 \end{align*} \]
- may be conveniently expressed in matrix notation: \(Ax = b \)
 \[A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = (8, 7)^T \]
- When we solved for \(x_1 = \frac{(8-3 \cdot x_2)}{2} \) and substituted into the 2\(^{nd} \) equation, we reduced the matrix to an equivalent form
 \[A = \begin{bmatrix} 2 & 3 \\ 0 & -2.5 \end{bmatrix}, \quad b = (8, -5)^T \]
- We did this by multiplying row 1 of \(A \) by 3/2 and subtracting the scaled version from row 2 of \(A \) and \(b \)
Rank 1 updates

- We call this a rank-

1 update

- \[A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix} \]

- Multiplying row 1 by 3/2: \[\begin{bmatrix} 3 & 9/2 \end{bmatrix} \]

- Subtracting from row 2:

- \[A' = \begin{bmatrix} 2 & 3 \\ 0 & -2.5 \end{bmatrix} \]

- Similarly for \(b \)

- An applet for looking at 2x2 systems:

 http://www.freeboundaries.org/java/la_applets/GaussElim/

Gaussian Elimination

- The process of eliminating the non-zero values under the main diagonal is called Gaussian Elimination, named after the mathematician Gauss (1777-1855)

- Input: an \(n \times n \) matrix corresponding to a linear system of \(n \) equations in \(n \) unknowns (The system must have a non-trivial solution)

- Eliminate the non-zero values under the main diagonal to produce an upper triangular matrix \(U \)
Solving the system of linear equations

- Once we have the upper triangular matrix U, the remaining step is trivial.
- Solve the corresponding upper triangular system $Ux = c$ by back substitution.

What are we computing?

- GE computes the LU factorization $A = LU$, where L is a lower triangular matrix.
- Plugging LU into the original equation $Ax = b$,
 $Ax = (LU)x = L(Ux) = Ly = b$ where $y = Ux$.
Solving the equations

- Plugging LU into the original equation $Ax = b$
 \[Ax = (LU) \cdot x = L \cdot (Ux) = Ly = b \] where $y = Ux$
- To solve $Ax = b$
 - Factorize $A = LU$ using GE \((2/3 \ n^3 \text{ flops}) \)
 - Solve $Ly = b$ for y using substitution \((n^2 \text{ flops}) \)
 - Solve $Ux = y$ for x using back substitution \((n^2 \text{ flops}) \)
- No need to compute U unless we are solving for multiple right hand sides b: in this case we don’t perform (forward) substitution

The algorithm

- We eliminate non-zeroes below the diagonal …
 - One column at a time
 - Scanning from left to right
Eliminating the entries below the diagonal

- Say we are reducing column \(k \)
- We subtract various multiples of row \(k \), \(A[k,k+1:n] \), from rows \(j = k+1 \) to \(n \)
- These multipliers are chosen to zero out the below diagonal elements
- We only update to the right of and below \(A[k,k] \)
- The multiplier for row \(j, j = k+1:n \) is \(A[j,k]/A[k,k] \)
- Observe that \(A[k,k]*A[j,k]/A[k,k] - A[j,k] = 0 \)

An example

- Consider the following system of equations
 \[
 \begin{align*}
 x_0 &+ x_1 &+ x_2 &= 3 \\
 4x_0 &+ 3x_1 &+ 4x_2 &= 8 \\
 9x_0 &+ 3x_1 &+ 4x_2 &= 7
 \end{align*}
 \]
- We usually write the system as an augmented matrix
 \[
 \begin{bmatrix}
 1 & 1 & 1 & 3 \\
 4 & 3 & 4 & 8 \\
 9 & 3 & 4 & 7
 \end{bmatrix}
 \]
An example

- Multiply row 0 by 4, and subtract from row 1

\[
\begin{bmatrix}
1 & 1 & 1 & 3 \\
4 & 3 & 4 & 8 \\
9 & 3 & 4 & 7 \\
\end{bmatrix}
\]

\[
[4 \ 3 \ 4 \ 8] - 4[1 \ 1 \ 1 \ 3] = [0 \ -1 \ 0 \ -4]
\]
An example

• Multiply row 0 by 9, and subtract from row 2

\[
\begin{bmatrix}
1 & 1 & 1 & 3 \\
0 & -1 & 0 & -4 \\
0 & 6 & -5 & -20
\end{bmatrix}
\]

\[[9 \ 3 \ 4 \ 7] - 9 \times [1 \ 1 \ 1 \ 3] = [0 \ -6 \ -5 \ -20] \]

An example

• Eliminate second column
• Multiply row 1 by 6, and add to row 2

\[
\begin{bmatrix}
1 & 1 & 1 & 3 \\
0 & -1 & 0 & -4 \\
0 & 0 & -5 & 4
\end{bmatrix}
\]

\[[0 \ -6 \ -5 \ -20] + -6 \times [0 \ -1 \ 0 \ -4] = [0 \ 0 \ -5 \ 4] \]
The computational inner loops

- In column \(k \)
 - Scale row \(k \) according to the multiplier
 - Subtract from row \(j \)
- The factors can be determined for the entire column by computing
 \[A[k+1:n-1,k] / A[k,k] \]

Putting it all together

- In column \(k \)
 - Multiply row \(k \) by a factor
 - Subtract from row \(j \)
- Factors \(p[k+1:n-1] \)
 \[A[k+1:n-1,k] / A[k,k] \]

\[
\begin{array}{ccc}
1 & 1 & 1 \\
4 & 3 & 4 \\
9 & 3 & 4 \\
\end{array}
\]

for \(k = 0 \) to \(n-1 \) \hspace{1cm} // For each column \(k \)

\[
m[k+1:n-1] = A[k+1:n-1,k] / A[k,k]
\]

for \(j = k+1 \) to \(n-1 \) \hspace{1cm} // Update by adding a multiple of row \(k \) to all succeeding rows \(j \)

\[
A[j,:) - m[j] * A[k,:]
\]

end for

end for
Avoiding severe roundoff errors

- Because the rank-1 update step uses division …
 \[A[j,:] -= (A[j,i]/A[i,i]) * A[i,:] \]
- we need to be careful about a vanishing denominator or one that is very small
- Gaussian elimination will fail with this matrix
 \[
 \begin{bmatrix}
 0 & 1 \\
 1 & 0
 \end{bmatrix}
 \]
- But we can avoid the problem if we swap rows
 \[
 \begin{bmatrix}
 1 & 0 \\
 0 & 1
 \end{bmatrix}
 \]

Pivoting to avoid stability problems

- We call this process of swapping rows *partial pivoting*
- Assume we carry 3 decimal digits of precision
- Consider the following A matrix and RHS b
 \[
 A = \begin{bmatrix}
 10^{-4} & 1 \\
 1 & 1
 \end{bmatrix}
 \quad
 b = \begin{bmatrix}
 1 \\
 2
 \end{bmatrix}
 \]
- The correct solution is
 \[
 x = \begin{bmatrix}
 1 \\
 1
 \end{bmatrix}
 \]
Roundoff

• Eliminate zero in row 2 by subtracting $10^4 \times$ row 0

\[
L = \begin{bmatrix}
10^{-4} & 1 & 1 \\
0 & 1 - 10^4 & 2 - 10^4 \\
\end{bmatrix}
\]

• But $1 - 10^4$ rounds to -10^4

\[
L = \begin{bmatrix}
10^{-4} & 1 & 1 \\
0 & -10^4 & -10^4 \\
\end{bmatrix}
\]

Stability problems due to roundoff

• Thus

\[
L|b = \begin{bmatrix}
10^{-4} & 1 & 1 \\
0 & -10^4 & -10^4 \\
\end{bmatrix}
\]

• We now back substitute to solve for x_2 and then x_1

$-10^4 x_2 = -10^4 \Rightarrow x_2 = 1$

• Substituting the value of x_2 into the first equation

$10^{-4} x_1 + 1^* x_2 = 1 \Rightarrow 10^{-4} x_1 = 0 \Rightarrow x_1 = 0$

• But the correct solution is $x_1 = x_2 = 1$
Partial Pivoting

- The general rule is to pick the largest value in the column we are eliminating, and choose the intersecting row as the pivot row.
- This is called partial pivoting, because only rows are swapped.
- It can be shown that when with partial pivoting, we compute \(A = PLU \), where \(P \) is a permutation matrix expressing the rows swaps.
- We can also swap columns: full pivoting.
- But full pivoting is more expensive to implement.

Parallelization

- We’ll use 1D vertical strip partitioning.
- Each processor owns \(N/p \) columns.
- Consider the case where \(p=N=6 \).
- The \(\| \) represents outstanding work in succeeding \(k \) iterations.
Analyzing the code

• Let’s look at the data parallel code to understand where the communication is occurring
• Assume blocked decomposition on the 2nd axis
• Parallelism occurs in array statements

```
for k = 0 to n-1                           // For each column k
   m[k+1:n-1] = A[k+1:n-1, k] / A[ k , k]
for j = k+1 to n-1                      // Update by adding a multiple of row k to all succeeding rows j
end for
end for
```

Determining communication requirements

• At each step k of the elimination, processor $k \div p$ is in charge: it computes the multipliers
• No communication is needed: all the required data are owned by processor $k \div p$

```
for k = 0 to n-1
   m[k+1:n-1] = A[k+1:n-1,k] / A[ k , k]
for j = k+1 to n-1
end for
end for
```
Determining communication requirements

• But the elements $A[k,:]$ can have different owners
• Processor $j \div p$ owns $A[k,j]$
• What operation is needed to carry out the multiplication $m[j] \cdot A[k,:]$?

for $k = 0$ to $n-1$
 $m[k+1:n-1] = A[k+1:n-1,k] / A[k,k]$
for $j = k+1$ to $n-1$
 $A[j,:] = m[j] \cdot A[k,:]$
end for
end for

Communication and control

• Each processor is in charge of eliminating N/P columns
• One processor chooses the pivot row and computes the multipliers
• The multipliers are then broadcasted
Communication and control

- All processors carry out updates

Performance

- Finding the pivot row is a serial bottleneck
- Only one processor owns the intersecting column
- Another bottleneck is load imbalance
Load imbalance

- This is a classic problem with a convenient soln
- When we are eliminating column k, processors to the left of k’s owner will sit idle

![Graph showing load imbalance]

Load imbalance

- Vertical decomposition
- n >> p
- Each processor is active for only part of the computation

![Graph showing vertical decomposition]
Load imbalance

- Vertical decomposition
- $n \gg p$
- Each processor is active for only part of the computation
Load imbalance

- Vertical decomposition
- $n \gg p$
- Each processor is active for only part of the computation

Cyclic decomposition improves load balance

- A cyclic decomposition evens out the workload
- A blocked cyclic decomposition improves locality and reduces communication overhead
In practice

- 2D block cyclic decompositions are needed; 1D is not scalable
- The algorithm is a bit more complicated since more communication steps are required
- The algorithm is blocked as with matrix multiply
- See the Demmel reader if you are interested in the details
- Scalapack is a well known library that performs GE and many other useful operations involving matrices
- See http://www.netlib.org/scalapack/