CSE 123b
Communications Software

Spring 2003
Lecture 2: Internet architecture and Internetworking
Stefan Savage

Some history...

1968: DARPA/NET (precursor to Internet)
- Bob Taylor, Larry Roberts create program to build first wide-area packet-switched network
- Why?

1978: new networks emerge
- SATNet, Packet Radio, Ethernet
- All islands

Big question: how to connect these networks?
Plug: “Where Wizards Stay Up Late” by Hafner and Lyon is the best account of early Internet History I’ve seen.

Primary Goal: Connect Stuff

“Effective technique for multiplexed utilization of existing interconnected networks” — David Clark

- Minimal assumptions about underlying networks
 - No support for broadcast, multicast, real-time, reliability
 - Extra support could actually get in the way (X.25 example)
- Packet switched, store and forward
 - Matched application needs, nets already packet switched
 - Enables efficient resource sharing/high utilization
- “Gateways” interconnect networks
 - Routers/Switches in today’s nomenclature

Why is this hard?

Heterogeneity

- Addressing
 - Each network media has a different addressing scheme; routing protocol
- Bandwidth
 - Modems to terabits
- Latency
 - Seconds to nanoseconds
- Packet size
 - Dozens to thousands of bytes
- Loss rates
 - Differ by many orders of magnitude
- Service guarantees
 - Send and pray vs reserved bandwidth

How to connect different networks?

- Monopoly
 - Re-engineer network to use a single set of protocols everywhere
 - Economic cost
- Translation Gateways
 - Translates directly between different network formats
 - $O(n^2)$ complexity (n is # of protocols)
 - May not be able to translate perfectly (QoS)
- Indirection Gateways
 - Translates between local network format and universal “intermediate” format
 - $O(n)$ complexity
 - May not take advantage of features in underlying network

Note impact of economics on decision. Engineering not science.

Internetworking

- Cerf & Kahn74, “A Protocol for Packet Network Intercommunication”
- Foundation for Internetworking and hence, the Internet
- We’ll talk about the reliability issues later
- All packets use a common Internet Protocol
 - Any underlying data link protocol
 - Any higher layer transport protocol
How IP works

Separate physical networks communicate to form a single logical network

What should the Internet Protocol do?

- Packetization?
- Addressing?
- Error detection?
- Reliable transmission?
- Packet sequencing?
- QoS?
- Security?

Decisions informed by the “End-to-End Principle”

Saltzer et al 84: End-to-End Principle

- Key question: Where should functionality be placed in a communications system?
- End-to-end argument
 - Functionality should be implemented at a lower layer if it can be correctly and completely implemented there
 - Incomplete versions of a function can be used as a performance enhancement, but not for correctness

- Early, and still relevant, example
 - ARPAnet provided reliable link transfers between switches
 - Packets could still get corrupted on host-switch link, or inside of the switches
 - Hence, still need reliability at higher layers

Example: Reliable File Transfer

- From server disk over network to client disk
- Many places where errors can be introduced
 - Disk can introduce bit errors
 - Host I/O bus can introduce bit errors
 - Packets can be corrupted, dropped, reordered at any node

- Conclusion
 - Still need integrity checks on entire file, at application level, not per packet or per hop
 - Impossible to design “perfect” layers because perfect requires support from higher layers

- Where can data be corrupted?
- How to tell if data has been corrupted?
- Is there any value in lower-layer reliability?

Internet architecture

- Impose few demands on network
 - Make few assumptions about what network can do
 - No QoS, no reliability, no ordering, no large packets
 - No persistent state about communications

- Manage heterogeneity at hosts
 - Adapt to underlying network heterogeneity
 - Re-order packets, detect errors, retransmit lost messages, etc.
 - Persistent network state only kept in hosts (fate-sharing)

- Service model: send and pray
So what does IP do?

- **Addressing**
 - How do I name the destination?
- **Fragmentation**
 - How do I handle packets that are larger than the next hop can accept (e.g., FDDI's maximum packet is 4500 bytes while Ethernet is 1500 bytes)
- **Error detection**
 - How do I know if a packet got corrupted?
- **Potpourri**
 - Routers forward packets to next hop
 - They do not:
 - Detect data corruption, packet loss, packet duplication
 - Reassemble or retransmit packets

Addressing

- Hierarchical addressing
 - Global inter-network address
 - Local network-specific address

- Why hierarchical?
- Assumptions about networks?

Fragmentation

- In a router each link may have a different Maximum Transmission Unit (MTU) – the largest packet it can transmit
 - Ethernet: ~1500 bytes
 - FDDI: ~4500 bytes
- Router needs to forward a packet that is too big for the next link it must cross
 - Router breaks up single IP packet into two or more smaller IP packets
 - Each fragment is labeled so it can be correctly reassembled
 - Those fragments can, in turn, be fragmented by later routers
- End host receives fragments and reassembles them into original packet

Error detection

- **Bit errors**
 - Data-link layer (e.g., Ethernet) generates a Cyclic Redundancy Check (CRC) for each packet
 - When packet is received by router or host, it checks packet against CRC for errors
 - Why isn't this enough?
 - Network-layer (IP) checksum written by sender
 - Checked at each hop and by receiver
 - Why not just check at the receiving host?
- **Packet losses**
 - Not part of IP, we'll deal with this next time

Today's IP Packet Header

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>ver</td>
<td>0</td>
</tr>
<tr>
<td>HL</td>
<td>15</td>
</tr>
<tr>
<td>TOS</td>
<td>16</td>
</tr>
<tr>
<td>length</td>
<td>31</td>
</tr>
<tr>
<td>identification</td>
<td>8</td>
</tr>
<tr>
<td>offset</td>
<td>16</td>
</tr>
<tr>
<td>TTL</td>
<td>8</td>
</tr>
<tr>
<td>protocol</td>
<td>8</td>
</tr>
<tr>
<td>header checksum</td>
<td>16</td>
</tr>
<tr>
<td>source address</td>
<td>16</td>
</tr>
<tr>
<td>destination address</td>
<td>16</td>
</tr>
<tr>
<td>options (if any)</td>
<td>8</td>
</tr>
<tr>
<td>data (if any)</td>
<td>21</td>
</tr>
</tbody>
</table>

Version field

- Which version of IP is this?
 - Plan for change
 - Very important!
- **Current versions**
 - 4: most of Internet
 - 6: new protocol with larger addresses
 - What happened to 5? Standards body politics.
Header length

- How big is IP header?
 - In # of 32bit words
 - Variable length
 - Options
 - Engineering consequences of variable length...

- Most IP packets are 20 bytes long

Type-of-Service

- How should this packet be treated?
 - Care/don’t care for delay, throughput, reliability, cost
 - How to interpret, how to apply on underlying net?

 Largely unused until 2000

Length

- How long is whole packet in bytes/octets?
 - Includes header
 - Limits total packet to 64K
 - Redundant?

Fragmentation

- Sender writes unique value in identification field
- If router fragments packet it copies id into each fragment
- Offset field indicates position of fragment in bytes (offset 0 is first)
- MoreFragments flag indicates that this isn’t the last fragment
- Don’tFragment flag tells gateway not to fragment
- All routers must support 576 byte packets (MTU)

Aside: costs of fragmentation

- Interplay between fragmentation and retransmission
- Packet must be completely reassembled before it can be consumed on the receiving host
- What if a fragment gets lost?

TTL (Time-to-Live)

- How many more routers can this packet pass through?
 - Designed to limit packet from looping forever
 - Each router decrements TTL field
 - If TTL is 0 then router discards packet
Protocol

- Which transport protocol is the data using?
 - i.e. how should a host interpret the data
 - Called demultiplexing

- TCP = 6
- UDP = 17

Header checksum

- Detects errors in IP header
 - Calculated by sending host
 - Checked by receiving host
 - Must be recalculated by router. Why?
 - Only protects header, not data

IP addressing

- 32-bits in an IPv4 address
 - Dotted decimal format a.b.c.d
 - Each represent 8 bits of address
- Network part and host part
 - E.g. IP address 132.239.15.3
 - 132.239 refers to the UCSD campus network
 - 15.3 refers to the host gremlin.ucsd.edu
- Which part is network vs host?

Class-based routing (<1993>)

- Most significant bits determines “class” of address
 - Class A
 - 0 Network
 - Host
 - 127 nets, 16M hosts
 - Class B
 - 10 Network
 - Host
 - 16K nets, 64K hosts
 - Class C
 - 110 Network
 - Host
 - 2M nets, 254 hosts
- Pro: single lookup to find address
- Con
 - Fragmentation
 - Hard to aggregate

Classless addressing (1993>)

- Classless Inter-Domain Routing (CIDR)
 - Routes represented by tuple (network prefix/mask)
 - Allows arbitrary allocation between network and host address
 - Prefix
 - Mask:
 - e.g. 10.95.1.2/8: 10 is network and remainder (95.1.2) is host
 - Pro: Finer grained allocation; aggregation
 - Con: More expensive lookup: longest prefix match

Options

- Special requests
 - Route Record
 - Timestamp
 - Source Route
 - Others...
 - Variable length
 - Interpreted by each router
 - Expensive design decision
ICMP

- Internet Control Message Protocol
- Sister protocol to IP
- Management functions (in response to pkts)
 - Asynchronous response from routers
 - Destination Unreachable
 - Time Exceeded
- Testing functions (request/reply pairs)
 - Echo request/response
 - Timestamp request/response

How is IP changing?

- IPv6
 - 128bit addresses
 - No fragmentation (so no header length), no options per se
 - Flow label
 - 1500 MTU
 - Security and mobility built in
- IPSEC
 - Authentication and Encryption of packet
 - Generally implemented end-to-end (at hosts)
- DiffServ
 - Reuse ToS bits to indicate (roughly) a local QoS class

Meta-points...

- The Internet was designed
 - There is no natural law that says TCP/IP, network routing, etc. had to look the way it does now
 - It could well have been done differently
- The Internet evolves
 - The Internet today is not the same Internet as 1988, 1973
 - TCP/IP have changed considerably over the years
 - We’re using IPv4, with IPv6 (maybe) being deployed
- Many of these design issues are deep
 - Seemingly straightforward decisions can have very subtle correctness and performance implications
 - E.g. Implications of fragmentation

Stuff you should definitely remember

- End-to-end principle and how its applied
- Purpose of the Internet Protocol
 - What problems it solves
 - How it solves them

For Next Time...

- Reliable Transmission and Flow Control
 - Some TCP specifics
- Read 2.5 and Chap 5 up to (but not including) 5.3