Introduction to Embedded Processors

CSE 291E / EE260C
Spring 2002

Overview

- Embedded Processors
 - Why?
 - Design Criteria
 - Architectural Options
- Example Architecture: ARM
 - Instruction Set Architecture
 - ARM7
 - ARM9
 - ARM10
- The Future

What is an Embedded Processor?

- An Embedded Processor is simply a processor that has been "Embedded" into a device
- It is software programmable but interacts with different pieces of hardware – how?
- Performs both control and computation – more performance than a microcontroller but not as much performance as a general purpose processor... yet
- Where are they used: Cars, Phones, Media Devices, Wireless, Printers – everyone uses them without thinking about it – start to think about it

Some Places ARMs can be found

- Daewoo inet.top.box
- Bush Internet TV / box
- Datcom 2000 digital satellite receiver
- Pace digital satellite receiver (supplied as part of the Sky package)
- Numerous other digital cable / satellite receivers
- Hauppauge WinTV DVB-S PC TV card
- Oracle NCI
- LG Java computer
- Millipede Apex Imager video board
- Paradise AiTV set top box
- Sony MZ-R90 minidisc
- Win-Jam
- JVC's digital camera 'Pixstar'
- Lexmark Z12/22/32/42/52 color Jetprinter
- Samsung office laser printer
- Samsung SmartJet MFP (printer/scanner/copier/fax)
- Xerox color inkjet printer
- Digital logic analyzers from Controlware
- ICUBE-2 Experimental Space Flight Computer
- Siemens video phone
- Wizcom's Quicktimer
- Various GSM handsets, from the likes of Alcatel, AEG, Ericsson, Kenwood, NEC, Nokia...
- Cable/ADSL modems, by manufacturers such as Caymen Systems, D-Link, and Zoom.
- 3Com 3CD990-TX-97 10/100 PCI NIC with 3XP processor
- Routers, bus adaptors, servers, crypto, gateways...
- POS systems
- Smart cards
- Adaptec PCI to Ultra2 SCSI 64 bit RAID controller
- ATA drive electronics controller systems (bare)
- Iomega HipZip digital audio player
- C Pen, with OCR and IrDA
- HP/Ericsson/Compaq pocket PCs
- Psion series 5 hand-held PC (5mx used 36MHz ARM710T)
- Various PDAs
What is it Really?

- Typically an Embedded Processor is a single-issue in-order RISC processor with a little cache.
- It can then be sold as a piece of silicon, custom layout, netlist, or architectural description.
- They are designed to be small, low power, and most importantly correct.
- Often due to the real-time constraints of an application area they are designed to have a small deterministic worst case time per instruction – this is changing.

Why use an Embedded Processor?

- If I am John Q. RandomEngineer why would I want to build a system with an embedded processor built in?
- The main reason is simple: Cost
 - Embedded processors are small – so they don’t take up much die area and thus they are cheap to fab.
 - Embedded processors are verified – so I won’t spend a bunch of engineering man hours tracking down hardware bugs so I can tape out my chip.
 - Embedded processors run software – the key part of that is the SOFT – deal with changing specs.

Design Criteria

- How do I design an “good” embedded processor?
- The three most important design criteria are performance, power, and cost.
 - Performance is a function of the parallelism, instruction encoding efficiency, and cycle time (or the good old NumInstr, CPI, Freq).
 - Power is approximately a function of the voltage, area, and switching frequency.
 - Also a function execution time for leakage.
 - Cost is a function of both area (how many fit on a die) and the complexity of use (in terms of engineering cost).
ISA Options
- What sort of architecture do we want to design?
- What sort of ISA should I provide (pros/cons)?
 - Register-Register / Memory-Memory
 - RISC / CISC
 - Predication
 - Compound Instructions (MAC, PostInc)
 - Instruction Encoding
 - Registers (number and access)
 - VLIW / SIMD / Vector

Design Options
- What parts should be included (pros/cons)
 - Core
 - Instruction Cache
 - Data Cache
 - Multiplier
 - Scratch Pad Memory
 - MMU
 - Write Buffer
 - TLB
 - Branch Prediction
Example Architecture: ARM
- ARM licenses their core to companies as IP that you can drop into your SoC design
- Other companies such as Intel license the ARM technology and build their own custom silicon
- What are the design choices that ARM made?
 - ISA Design
 - Actual Implementation Details
- 3 ARM Processors Families in production: ARM7, ARM9, and the recently released ARM10

RISC Processor Market Share

Example SOC

ARM ISA
- ARM is a Load-Store RISC Architecture
 - First production RISC architecture ever
- 32-bit architecture
- All instructions are predicated
- 16 Registers
 - r0-r14 are general purpose
 - r15 is the program counter
- 32-bit instructions
ARM Instructions

- **Loads**
 - Access can be byte, half-word, or word aligned
 - Lots of different indexing modes
 - Register indirect, Two register indirect, Register indirect with constant, Base+offset, Pre and Post increment

- **Control**
 - Control set up with comparison instruction (CMP)
 - Can be followed with a branch to a section of code
 - Can predicate following instructions
 - Using codes for equal, less than, overflow, carry set

Thumb Extensions

- First implemented in 1995 in the ARM7 core
- Thumb is a 16-bit subset of the ARM ISA
- It runs on a 32-bit chip so gets all of its benefits
- 32-bit address space, registers, shifter, ALU, memory transfer
- Thumb code is 65% of the size of ARM code,
- Lets software be designed for performance or code size on the granularity of a basic block
 - flexibility.

Thumb Decoder
ARM7 Data Path
- Two blocks shown, Data and Decode paths
- Two read port, one write port, additional ports for r15 (PC)
- Single cycle execute and write back

ARM7
- Von-Neumann Architecture (8k cache)
- Simple 3 Stage Pipeline
- No penalty for unaligned access
 - Better for embedded applications
- In 0.13µm:
 - Die size of 0.26 mm²
 - Greater than 133 MHz
 - IPC of 0.9
 - 0.06 mW/MHz

ARM9
- Harvard Architecture (8k Icache, 8k Dcache)
- 5 Stage Pipeline
- Improved MMU support
- 8 entry write buffer
- In 0.13µm:
 - Die size of 3.2 mm²
 - Greater than 250 MHz
 - IPC of 1.1
 - 0.36/0.19 mW/MHz (with/without cache)

ARM10
- New 64-bit load-store architecture
- Up to 32K instruction and data cache
- 7 Stage pipeline
- New DSP instruction set
- Optional Vector Co-processor
- In 0.13µm:
 - Die size of 6.9 mm²
 - Greater than 325 MHz
 - IPC of 1.25
 - 0.6 mW/MHz
Future of Embedded Processors

- Pipeline lengths are starting to get very long
 - How does high performance architecture handle this
 - Branch prediction?
- Intel's XScale has branch prediction tables
- Embedded processor designs take heavily from high performance processor designs
 - But now under different constraints
- What else will migrate to the embedded space?

Future of Embedded Processors

- VLIW processors
 - Multiple issue machines
 - Scheduling done by the compiler
- Customized Processors
 - Such as from Tensilica
 - Allows more cost effective design as we now pick only what is important
- Instruction Compaction
 - Thumb is good, but we need to do better as more and more functionality moves to software