Def-Use and Use-Def Chains

Application of ReachingDefs

Auxiliary data structures like CFG

Ex. DefUse Chains

\[X := \]
\[\text{if (.) then } X := \quad \text{else } X := \]
\[\Rightarrow X \]

Optimizations may operate on Def-Use chains

Can bypass CFG entirely

Static Single Assignment Form (SSA)

Each (static) assignment to a variable renamed

All of the uses reached by the assignment renamed

Results in a single def that reaches every use

Ex.

\[X := \]
\[\Rightarrow X \]
\[X := \]
\[\Rightarrow X \]
\[\text{if (.) then } X := \quad \text{else } X := \]
\[\Rightarrow X \]

SSA with Def-Use chains

Def-Use chains

More compact Def-Use representation
Advantages of SSA

More compact Def-Use representation

Ex. CFG is $O(N)$

More powerful optimizations
- Value Numbering
- Program Equivalence
- Constant Propagation

Faster optimizations
- Constant Propagation
- Code Motion

Increased Parallelism

Used in real compilers!
- IBM Jikes, Sun, Compaq Swift Java, Tera MTA, Scale,...
SSA Loop Example

\[(1) \quad \text{Read}(N) \]
\[2) \quad i := 1 \]
\[3) \quad \text{if } i > N \text{ goto } L3 \]
\[4) \quad a(i) := a(i) + 1 \]
\[5) \quad i := i + 1 \]
\[6) \quad \text{goto } L2 \]
\[7) \quad \text{Print}(A(0)) \]
\[8) \quad \text{L3: Print}(A(0)) \]

\(\Phi \) makes merge of values explicit

Qu: How construct SSA form?

Computing SSA

Compute Dominance Frontiers
Potential join points, based only on CFG

Place \(\Phi \) (Phi) Functions
Join points based on actual assignments in program
Want minimal number

Rename variables
Each use has a unique definition point

Get minimal SSA!
Dominance Frontiers

- **Strictly dominates** \gg **Dominates**
- $DF(X) = \{ Y | \exists Z \text{ a pred of } Y (X \gg Z \text{ and } X \not\gg Y)\}$
- X dominates a predecessor of Y but does not strictly dominate Y

$$DF(S) = \bigcup_{s \in S} DF(s)$$

Other Examples
Ladder graph example

<table>
<thead>
<tr>
<th>Node X</th>
<th>DF(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>{G,H,I,J}</td>
</tr>
<tr>
<td>B</td>
<td>{H,I,J}</td>
</tr>
<tr>
<td>C</td>
<td>{I,J}</td>
</tr>
<tr>
<td>D</td>
<td>{J}</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>{G}</td>
</tr>
<tr>
<td>G</td>
<td>{H}</td>
</tr>
</tbody>
</table>

Computing Dominance Frontiers

\[
DF(X) = DF_{\text{local}}(X) \cup \bigcup_{\text{Z a child of X} \uparrow} DF_{\text{up}}(Z)
\]

\[
DF_{\text{local}}(X) = \{Y \text{ a succ. of } X \mid idom(Y) \neq X\}
\]

\[
DF_{\text{up}}(Z) = \{Y \text{ in } DF(Z) \mid idom(Y) \neq X\}
\]

Complexity: Linear in size of \(\bigcup \) of DF sets

Linear in size of CFG for well-structured programs
Placing Phi Functions

\begin{align*}
&V := V \\
&W := W \\
&W := \phi(W, W) \\
&W := \phi(W, W)
\end{align*}
Placing Phi Functions

\[\text{DF}^1(S) = \text{DF}(S) \]
\[\text{DF}^{i+1}(S) = \text{DF}(S \cup \text{DF}^i(S)) \]
\[\text{DF}^+(S) = \lim_{i \to \infty} \text{DF}^i(S) \]

Let \(S = \{\text{nodes with asst's to X} \} \cup \{\text{Entry}\} \)

\(\text{DF}^+(S) \) is the set of nodes that require phi functions for variable X

Worklist algorithm, pass for each variable
- Initialize worklist with set of all assignments to variable
- For each \(Y \) on worklist, place phi function for each \(Z \) in \(\text{DF}(Y) \)
 - if not already there, and place it on worklist

Complexity: \((\text{Total no. Assts. \times wt.av.}(\text{DF})) \)

Renaming Variables

\[V := \phi(V, V) \]
\[W := \phi(W, W) \]
Renaming Variables

Keep stack of indices for each variable

Traversal of Dominator tree, starting from Entry
Visit Node:
 \textbf{RHS Asst in Node:}
 Rename with index from variable’s TOS
 \textbf{LHS Asst in Node:}
 Create new index, rename, and push
 \textit{function in \textit{j}th successor of Node:}
 Rename \textit{j}th variable in \textit{\phi} with TOS index

Visit all children of Node in Dom tree
Pop stack for each LHS asst in Node