General Data Flow Framework

Goal: single framework for all data flow problems

Single algorithm, analysis of termination, complexity

Approach: Domain of program properties, organized as Lattice

Lattice $\mathbb{L} = (D, \sqcap)$

Domain Meet operator

\sqcap = All sets of defs

Define $X \sqsubseteq Y$ iff $X \sqcap Y = X$

Ex \subseteq

$\{X, Y, Z\} = \text{Top}$

$\{X, Y\}$

$\{X, Z\}$

$\{Y, Z\}$

$\{X\}$

$\{Y\}$

$\{Z\}$

$\emptyset = \perp$ Bottom

1

Lattice Properties

\leq Partial order over domain which is

- **Transitive:** for all x, y, z if $x \leq y$ and $y \leq z$ then $x \leq z$

- **Reflexive:** for all x, $x \leq x$

- **Anti-symmetric:** for all x, y if $x \leq y$ and $y \leq x$ then $x = y$

- **Associative:** $x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$

- **Unique least upper bound:** $x \sqcap y$

- **Unique greatest (least) element:** \top, \perp

- **Height of lattice:** length of longest path from top to bottom

2
General Data Flow Framework

Flow Graph \mathcal{F} Ex CFG, Reverse CFG, call graph

Lattice $\mathcal{L} = (\mathcal{D}, \sqsubseteq)$ Top, Bottom \top, \bot

Induced partial order $x \sqsubseteq y$

Set of Transfer functions $f: \mathcal{D} \rightarrow \mathcal{D}$

- include identity, constant functions
- closed under composition of functions, \circ

Function assigned to each node to summarize its effects

Example: Liveness Problem, 2 variables

Flow Graph \mathcal{F} Reverse CFG

Lattice $\mathcal{L} = (\mathcal{D}, \sqsubseteq)$ Top, Bottom \top, \bot

\[\top = \phi \]

\[\{x\} \rightarrow \{y\} \rightarrow \{x,y\} = \bot \]

- elements of \mathcal{D} form the lattice

Set of Transfer functions

- All functions $\mathcal{D} \rightarrow \mathcal{D}$

3

Example: Liveness Problem, 2 variables

Flow Graph \mathcal{F} Reverse CFG

Lattice $\mathcal{L} = (\mathcal{D}, \sqsubseteq)$ Top, Bottom \top, \bot

\[\top = \phi \]

\[\{x\} \rightarrow \{y\} \rightarrow \{x,y\} = \bot \]

- elements of \mathcal{D} form the lattice

Set of Transfer functions

- All functions $\mathcal{D} \rightarrow \mathcal{D}$

4
Iterative Algorithm

Initialization: Reverse CFG if backward problem.
Initialize \(\text{Out}(B), \text{In}(B) \)

Worklist Algorithm:

Worklist := Set of all nodes

While (Worklist \neq \emptyset)

Remove node \(N \) from worklist

\(\text{OldOut} := \text{Out}(N) \)

\(\text{In}(B) = \bigcup_{P \text{ pred of } B} \text{Out}(P) \)

\(\text{Out}(B) = f_B(\text{In}(B)) \)

if \(\text{Out}(N) \neq \text{OldOut} \) then add successors of \(N \)
to Worklist

How know iterative algorithm works?

Termination:

Finite Lattice Functions have finite no. of possible values

\[
\begin{array}{c}
(\{x_1,x_2\}, \{x_1,x_3\}) \\
(\{x_2\}, \{x_1, x_2\}) \\
(\{\phi\}, \{x_1, x_2, x_3\})
\end{array}
\]

finite depth

Monotone Functions are non-increasing or decreasing

Iterative Method guaranteed to terminate:
Iterate till no change, all equations simultaneously satisfied

Quality of solution?
Quality of Iterative Solution

Best Solution: Holds for all real paths taken during program execution.

Meet-Over-all Paths (MOP):
Iterative solution over all paths

\[\text{MOP}(B) = \bigcap \{ f \mid f \geq B \} \]

where \(f \) is the initial lattice value at Entry and \(f_p \) is \(f_{B_n} \circ \ldots \circ f_{B_1} \)

for \(p = B_1 \ldots B_n \).

MOP is undecidable (even if monotonic)

When can MOP be achieved?

Distributive property: \(f(X \sqcup Y) = f(X) \sqcup f(Y) \)

Merge then apply \(f \) same as apply \(f \) then merge

Distributive → MOP solution via iterative algorithm

What is not distributive?

Constant propagation

Ex. \(X := 2 \) \(Y := 3 \) \(X := 3 \) \(Y := 2 \) \(\Rightarrow X + Y \)

Maximal Fixed Point (MFP) Solution:
Achieved by iterative algorithm on all problems covered.

MFP = MOP if distributive

MFP ≤ MOP ≤ Best
Summary Iterative Algorithm

Complexity: \(O(N^2) \) where \(N \) = size of FG

May take long to converge
 Can improve by good choice of node order, ...

Simple to implement

Handles irreducible graphs

Doesn't recognize program structure
 Loops, intervals

Interval-based Data Flow Analysis

Local Propagation:
 For each interval, in order inner to outer,
 collect local info for each node in the interval
 use the local info for the interval nodes to collect
 info for the node representing the interval

Global Propagation:
 For each interval, in order outer to inner,
 given the IN set for the header to the interval,
 propagate global info to all nodes in the interval

Result: CFG with global data flow info
Interval-based Solution

LOCAL: inner to outer

GLOBAL: outer to inner

\[f_{R1} = \lim_{n \to \infty} (f_{B1} \circ f_{B2})^n \]

\[f_{R2}(\text{In}) = \text{Out} \]

Summary Interval-based Algorithm

Complexity: \(O(E \cdot (E)) \)
- if reducible (\(E\) grows slowly)
- exponential if irreducible

Backward Problems more difficult
- Reverse CFG can have multiple entry loops

More complicated implementation

Uses more space

Irreducible subgraphs handled separately

Allows for incremental update

Often used in practice