Control Flow Graphs

Nodes: Statements or Basic Blocks
(Maximal sequence of code with branching only allowed at end)

Edges: Possible transfer of control

Example:

if P	hen S1
ever S2
S3

P predecessor of S1 and S2
S1, S2 successors of P

Finding Basic Blocks

Identify Headers
The first instruction is a header
The target of any branch is a header
The instruction following any branch is a header
Add new nodes Entry, Exit as headers

For each header, add successive instructions to BB
until reach next header

Ex.

a := 1
b := 2
if P then go to L1
c := 3
L1: d := 4
e := 5
Finding Edges in CFG

There is a directed edge $B_1 \longrightarrow B_2$ if either:

- There is a branch from last instruction in B_1 to header of B_2
- B_2 immediately follows B_1, and B_1 does not end in an unconditional branch

There is an edge from Entry to each initial BB

There is an edge from each final BB to Exit

There is at most one edge $B_1 \longrightarrow B_2$

Example

\begin{align*}
a & := 1 \\
b & := 2 \\
L1: \quad c & := a + b \\
d & := c - a \\
& \quad \text{if () go to } L2 \\
d & := a + b \\
e & := e + 1 \\
& \quad \text{if () go to } L3 \\
L2: \quad b & := a + b \\
e & := c + a \\
& \quad \text{if () go to } L1 \\
L3: \quad a & := b + d \\
b & := a + d
\end{align*}
Extended Basic Blocks

Maximal connected set of basic blocks with a header, and each block (except the header) having a single predecessor

Tree of basic block nodes rooted at header

Advantage: Larger region for local optimization

Ex.
\begin{align*}
a &:= 1 \\
b &:= 2 \\
\text{if } P \text{ then go to L1} \\
c &:= 3 \\
\text{L1: } d &:= 4 \\
e &:= 5
\end{align*}
Why are CFG’s Useful?

Can summarize info per BB

A pass over CFG is shorter than pass over program

Can easily find unreachable code

Makes syntactic structure (like loops) easy to find

What are loops?

1. Strongly connected components
 any node reachable from any other
 Maximal SCC

2. Natural Loops
 via dominators

3. Intervals
 via depth first spanning trees
Examples: Finding Maximal SCC’s

What are loops?

Suppose
1. All paths from Entry to B go through H, and (Header H dominates B)
2. There is an edge from B to H (NL Back edge)
3. All nodes are reachable from B.

Natural Loop (wrt $B \rightarrow H$) subgraph of CFG

Nodes: B, and all nodes N that reach B
without going through H
Edges: induced as subgraph

Can find natural loop by backward traversal from B
Dominator Trees

Def. A dominates B in CFG G iff
A lies on every path in G from Entry to B.

Facts:
A dominates A \hspace{1cm} \text{(reflexive)}
A dominates B & B dominates C implies A dominates C \hspace{1cm} \text{(transitive)}
A dominates B & B dominates A implies \hspace{1cm} A = B \hspace{1cm} \text{(anti-symmetric)}

Def. A immediately dominates B iff A dominates B,
A \neq B, and there is no C distinct from A and B
such that A dominates C and C dominates B

Immediate dominators form a tree

Example

Dominator Tree

\begin{itemize}
 \item Entry
 \item B1
 \item B2
 \item B3 \quad B4 \quad B5
 \item Exit
\end{itemize}

CFG

\begin{itemize}
 \item Entry
 \item B1
 \item B2
 \item B3
 \item Exit
\end{itemize}

Natural Loop (B4 → B2)
B2, B3, B4
Example

Dominator Tree

```
Entry
  └── B1
     └── B2
        ├── B3
        │   └── B4
        │       └── B5
        └── Exit

Natural Loop (B4 → B2)

B2, B4
```

CFG

```
Entry
  └── B1
     └── B2
        └── B3
             └── B4
                   └── B5
                           └── Exit
```

What's wrong with natural loops?

Don't find all "loops"

(\(H \) doesn't dominate \(B\))

```
H
  ┌─ B
  │   └── H
```

Don't find irreducible subgraphs

(multiple-entry SCC)

```
H
  ├── B
  │   └── C
```

(No dominator relation between \(C\) and \(B\))

Hard to tell if nested
when same header \(H\)
Intervals

Find "Regions" in CFG
Make each region a node, and continue

Get hierarchical nesting (possibly, control tree)

Ex. Cocke-Allen Intervals

![Diagram of Cocke-Allen Intervals](image)

Structural Analysis

Tarjan Intervals

Ex.

![Diagram of Tarjan Intervals](image)

Ex.

![Diagram of Tarjan Intervals](image)

Smallest single-entry region containing irreducible subgraph
Depth First Spanning Trees

Spanning tree of graph (includes all nodes of graph)

Formed by depth-first search

- Visit descendants of node before non-descendant siblings

Assign depth-first numbering

Successive numbers, in order first visited

```
Entry
B0 → B1 → B2 → B3 → B4
B5
Exit
```

Process nodes

- pre-order
- in-order
- post-order

Constructing Tarjan Intervals

Ex. CFG

```
Entry
B0 → B1 → B2 → B3 → B4
B5
Exit
```

DFS Tree

```
Entry
B0 → B1 → B2 → B3 → B4
B5
Exit
```

- back edges
- forward edge
- cross edge
Constructing Tarjan Intervals (cont'd)

Back:
From node to an ancestor in tree

Forward:
From node to a descendant in tree

Cross:
From node to non-ancestor with smaller DF number

Qu: How tell if ancestor or descendant?

Constructing Tarjan Intervals (cont’d)

For each back edge B → H, in reverse pre-order of headers:

Find Interval I(H):
Starting from B, traverse CFG edges backwards.
Stop when get to header H, or node with lower number than H.
(in the latter case, the CFG is irreducible).

The nodes traversed (including H) constitute I(H).

Replace nodes in I(H) with new node N_H that points to it.

Result: Hierarchical CFG with Tarjan Intervals

![Diagram of Tarjan Intervals]

Irreducible subgraph is an interval!