Last class

- Multicast communications
 - One-to-many
 - Publish and subscribe model (receiver-based)

- Routing protocols
 - Per source tree routing
 - RPF, RPB, RPM
 - Builds efficient trees
 - S*G state explosion for large networks/groups
 - Shared tree
 - Unicast to rendezvous point
 - More complex, fragile, hard to manage
 - Trees inefficient by as much as 2x
 - Only requires G state on routers

Today's issues

- What are implications of hosts that move?
 - Remember routing? It doesn't work anymore...

- Problem review

- Design issues

- Case studies
 - Mobile IP [Johnson96]
 - TCP Migrant [Snoeren et al00]

The Mobility Problem

- Implicit assumption that Internet hosts are fixed
 - IP addresses used to name hosts; cached by higher layers
 - IP routing breaks if addresses change location. Why?
 - Unfortunately, the buying public likes mobility

Problems

- How does a mobile host get a local IP address?

- How do you know which IP address to use when sending to a mobile host?

- If a host moves during communication how do you know how to migrate state to the new IP address?

- Backwards compatibility (higher-layer state caching)
Application demands

- Geographic scope
 - Switching 802.11 LANs at UCSD vs visiting IBM in Zurich

- Rate of change
 - Cell-phone in airplane vs hotel room dial-in

- Continuity
 - State associated with session (e.g. ordering plane tickets)

- Interactivity
 - Cell-phone handoff?

- Remote accessibility
 - Client vs Server

Some simple solutions

- Datalink layer mobility
 - Wireless learning bridges (CMU campus solution)
 - Transparently update MAC-layer mappings in access points

- Dynamic Host Configuration Protocol (DHCP)
 - Request IP address dynamically (special broadcast address)
 - How do you get contacted at new IP address?
 - One solution: dynamic DNS
 - Authentication issues (who can use 802.11 in AP&M?)

Mobile IP: Johnson96

- Current IETF proposed standard for mobility
 - Dates back to research in the early 90s
 - IPv4 (RFC 2002), IPv6 version is roughly the same

- Design constraints
 - Network layer solution
 - Only requires changes to mobile hosts
 - Stationary hosts oblivious to mobility
 - Incrementally deployable

Mobile IP Approach

- Mobile Host (MH) has two addresses
 - Home address
 - Never changes, uniquely identifies the host
 - In "home network"
 - Correspondent host (CH) addresses all packets to the home address
 - Care-of address
 - Will change, perhaps frequently
 - In "foreign network"
 - Related to current location (IP routing gets it to the right place)

Home and Foreign Agents

- Home agent (HA) implements level of indirection between the mobile host and correspondents
 - Accepts traffic sent to home address
 - What about requests from home network?
 - Tunnels traffic to the mobile host (using care-of address)
 - And vice versa, correspondent none the wiser

- Foreign agent (FA) represents mobile in foreign network
 - Foreign agent can be care-of address
 - Mobile host does not need its own address in foreign network
 - Potential advantage: deal with local mobility locally

Mobile IP (MH at Home)
Mobile IP (MH Moving)

- Correspondent Host (CH)
- Mobile Host (MH)
- Home Agent (HA)
- Foreign Agent (FA)
- Home Location
- Visiting Location
- Registration
- Packet

Mobile IP (MH Away)

- Correspondent Host (CH)
- Mobile Host (MH)
- Home Agent (HA)
- Foreign Agent (FA)
- Home Location
- Visiting Location
- Encapsulated

Mobile IP Issues

- To make all this happen, a number of issues have to be addressed
 - Discovering agents
 - Registering addresses with agents (establishing bindings)
 - Authentication
 - Tunneling
 - Performance (!)

Agent Discovery

- Agent discovery enables a mobile host
 - To notice when it changes networks
 - To notice when it is home again
 - When home, take down the tunnel
 - To find a foreign agent to register with
 - Agents multicast agent advertisements locally
 - Beacons that tell the mobile who it can hear
 - Start in network A, move to network B
 - Lack of A’s beacons and presence of B’s tells mobile it has switched networks
 - Mobile can also multicast an agent solicitation
 - Why does multicast work here?

Registration

- Mobiles must register care-of addresses with their home agents
 - So that the home agent knows where to tunnel packets
 - Registration needs to be updated when location changes
- Multiple steps
 - Registration requests first go to foreign agent, then to home agent, which replies to foreign agent, which forwards back to the mobile
- Lifetimes
 - Registrations have TTLs

Registration Authentication

- Registration requests can be used by attackers to hijack tunnels from home agent
 - Hey, send all the mobile’s traffic to me now
- Need to authenticate that a registration
 - Came from mobile host (authenticity)
 - Has not been altered (integrity)
 - Is not a replay attack (freshness)
- Mechanisms
 - Shared keys (mobile and home are from same admin domain)
 - MD5 digests
 - Nonces or timestamps
Tunneling
- Home agent and mobile communicate using a tunnel
 - IP in IP encapsulation
- Original packet
 - Correspondent address (src) → mobile home address (dest)
 - Gets sent to home agent
- Tunnel packet
 - Encapsulates original packet
 - Home agent (src) → care-of address (dest)
 - Gets sent to foreign agent (or mobile, depending on care-of)
 - Mobile can respond back directly (which source address?)
- Asides
 - Bit of overhead (20 byte header for every packet…poor telnet)

Performance
- The good: No overhead in local operation
 - Home agent out of picture, no longer intercepts packets
 - The common case?
- The bad: Significant overhead in remote operation
 - Triangle routing: Packets between two hosts separated by inches can travel 1000s of miles
 - Wide-area effects can determine “local” connection performance
 - The uncommon case? Even so, a steep price to pay
- Hence: Route optimization

Route Optimization
- Route optimization shortcuts the triangle
 - Correspondents can learn and use mobile care-of addresses
 - Tunnel packets directly to care-of address, skip home agent
 - Requires changes to correspondents
 - Or to routers: less likely
- Issues
 - Binding cache updates (consistency)
 - Binding update authentication (more trust)
 - Yet more complexity
 - Necessary for scalability?
- End result: Mobile IP is not widely deployed

Alternative: Transport-level mobility [Snoeren00]
- Same goals
 - Do not disrupt connections when network address changes
- Different approach
 - Combination of DNS naming and connection migration
 - Naming + transport (vs. network-layer w/ Mobile IP)
 - Based upon observation of how connections are made from mobile
- Three components
 - Addressing
 - Locating mobile hosts
 - Connection migration

Addressing
- Mobiles obtain an network-local IP address
 - No home agent, no home address
 - No foreign agent
 - No tunneling
 - Communication between correspondent and mobile uses addresses directly
- Problem: How does the correspondent learn the mobile’s address?
 - If the mobile initiates the connection, the mobile tells the correspondent its address with the SYN packet
 - What about mobile servers?

Locating Mobiles
- Observation: Whenever connections are established, a DNS lookup is performed (e.g. www.yahoo.com)
- Idea: Use the DNS lookup to return latest mobile address to correspondent
 - In Mobile IP, home address is used to uniquely identify mobile
 - In Transport-level mobility, DNS name is used for this purpose
 - When mobile moves and obtains a new IP address, it updates its DNS entry
Connection Migration

- Problem: What about existing open connections?
- Solution: TCP Connection Migration
 - New TCP Option: Migrate
 - Negotiated with Migrate-Permitted option in SYN
 - Requires modification to TCP stacks at both ends

Basic Idea

- We have an open connection between correspondent (src) and mobile (dest)
 - Doesn’t matter who initiated the connection
 - Connection represented by
 » <src IP, src port, dest IP, dest port>
 - Mobile moves
 » Now has new <dest IP*, dest port*>
 - Want to change connection to
 » <src IP, src port, dest IP*, dest port*>
 - Mobile creates a new connection to the correspondent, forces correspondent to migrate old connection to new one
 - Uses token to show that connections are connected

TCP Migration example

1. Initial SYN
2. SYN/ACK
3. ACK (with data)
4. Normal data transfer
5. Migrate SYN
6. Migrate SYN/ACK
7. ACK (with data)

Issues

- Pro
 - No change to routing infrastructure
 - No triangle routes
 - Simple
- Con
 - Can be used beyond TCP?
Next time

- Quality of service… read Ch 6.5