CSE 123b
Communications Software
Spring 2002
Lecture 6: Routing II

Stefan Savage

Some slides courtesy David Wetherall
Projects...

- **Project #1:**
 - Implement simple distance vector routing protocol
 - We provide a “framework” called fisnhet for implementing
 - Fishead: program that simulates network; maintains topology, etc.
 - Libfish.a: library that provides basic functions (sending and receiving packets, timers and keyboard input)
 - Fish.h: a head file that defines this API
 - You will test your implementation in your own local fishnet
 - We will provide a long running fishnet that everyone in the class can join (one big network)

- BUT… still not ready… 😞 Tuesday with complete documentation. Will be due two weeks from Tuesday.
Last class

- Routing: how to get packets to their destination
 - **Forwarding**: local calculation to decide next hop for each packet
 - **Routing**: global calculation to ensure that forwarding decisions ultimately take packets to the right place

- Intra-domain routing protocols
 - Also called Interior Gateway Protocols (IGP)
 - Distance Vector
 - Local exchange of global routing information
 - In steady-state converges to correct solution
 - Problems during failures: count-to-infinity
This class

- Finish Intra-domain routing
 - Link-state protocols

- Inter-domain routing
 - BGP
 - Policy
 - Peering/transit economics
Link State routing

- Same goal as DV, but a different approach
- Two phases
 - Reliable flooding
 - Tell all routers what you know about your local topology
 - Path calculation (Dijkstra’s algorithm)
 - Each router computes best path over complete network

- Motivation
 - Using DV, routers only have local information, making it difficult to decide what to do when there are changes
 - With LS, faster convergence and better stability (hopefully)
 - More complex
Flooding

- Each router maintains link state database and periodically sends link state packets (LSPs) to neighbor
 - LSPs contain [router, neighbors, costs]
- Each router forwards LSPs not already in its database on all ports except where received
 - Each LSP will travel over the same link at most once in each direction
- Flooding is fast, and can be made reliable with acknowledgments
Reliable flooding

- Goal: tell everyone what you know about local topology

- Periodically send link state packets (LSPs) on all links
 - LSP contains [node, neighbors, costs, sequence number]

- If node X receives an LSP from node Y over link Q
 - Save it in local link state database
 - Forward LSP on all links except Q

- Use explicit ACKs and retransmits to make flooding reliable

- Each LSP will travel at most once over each link
Flooding example

- LSP generated by X at T=0
- Nodes become orange as they receive it

T=0

T=1

T=2

T=3
Reliable flooding challenges

- When link/router fails need to remove old data...how?
 - LSPs carry sequence numbers to distinguish new from old
 - Only accept (and forward) the “newest” LSP seen from a node
 - Send a new LSP with cost infinity to signal a link down

- What happens when a router fails and restarts?
 - What sequence # should it use? Don’t want data ignored
 - Aging
 » Put a TTL in the LSP, periodically decremented by each router
 » When TTL = 0, purge the LSP and flood the LSP with TTL 0 to tell everyone else to do the same
 » If router waits for LSP to age out can use any sequence number

 - Alternative: when receiving an “old” LSP from a node, tell the node what the current sequence # is rather than simply dropping the LSP
More challenges

- What happens if the network is partitioned and heals?
 - Different LS databases must be synchronized
 - Use version #s on each LSP (incremented for each update)
 - Compare version #s when a link comes back up and request out of date LSPs
Dijkstra’s Shortest Path Tree (SPT) algorithm

- Graph algorithm for single-source shortest path tree

\[
\begin{align*}
S &\leftarrow \emptyset \\
Q &\leftarrow \text{<all nodes keyed by distance>}
\end{align*}
\]

While \(Q \neq \emptyset \)

- \(u \leftarrow \text{extract-min}(Q) \)
- \(S \leftarrow S \text{ plus } \{u\} \)
- for each node \(v \) adjacent to \(u \)
 - “relax” the cost of \(v \)

\(\leftarrow u \text{ is done} \)
Dijkstra Example – Step 1
Example – Step 2
Example – Step 3
Example – Step 4
Example – Step 5
Example – Done

![Graph with labeled edges and nodes]

- Node 0
- Node 10
- Node 8
- Node 1
- Node 9
- Node 2
- Node 3
- Node 4
- Node 5
- Node 7
- Node 9
- Node 2
- Node 7
- Node 6
- Node 5
- Node 10
Link State evaluation

- **Strengths**
 - Loop free as long as LSDB’s are consistent
 » Can have transient routing loops
 - Messages are small (esp compared to DV)
 - Converges quickly (esp compared to DV)

- **Weaknesses**
 - Must flood data across entire network (scalability?)
 - Must maintain state for entire topology
Link State in practice

- OSPF (Open Shortest Path First) and IS-IS
 - Most widely used intra-domain routing protocol
 - Run by almost all ISPs and many large organizations

- Basic link state algorithm plus many features:
 - Authentication of routing messages
 - Extra hierarchy: Partition into routing areas
 - Load balancing: Multiple equal cost routes
But the **Internet** is not just one network...

- Inter-domain versus intra-domain routing

You at work

You at home

Backbone service provider

Large corporation

"Consumer" ISP

Small corporation

Peering point

"Consumer" ISP

"Consumer" ISP
Historic context

- Original ARPAnet had single routing protocol
 - Dynamic DV scheme, replaced with static metric LS algorithm
- New networks came on the scene
 - NSFnet, CSnet, DDN, etc…
 - The total number of nodes was growing exponentially
 - With their own routing protocols (RIP, Hello, ISIS)
 - And their own rules (e.g. NSF AUP)

- **Scalability**: Routing tables with millions of entries?

- **Heterogeneity**: Network A uses hop count as a metric, Network B uses measured delay, Network C uses link capacity; what if networks use different routing protocols?

- **Policy**: Network A connects to Networks B and C. Network B is only allowed to carry network C’s traffic?
Solution: Inter-domain routing

- Separate routing inside a domain from routing between domains
 - Inside a domain use traditional interior gateway protocols (RIP, OSPF, etc)
 - Between domains use Exterior Gateway Protocols (EGPs)
 » Only exchange reachability information (no metrics)
 » Decide what to do based on local policy

- Terminology: Autonomous Systems (ASs)
 - Unit of abstraction in interdomain routing; another word for domain
 - Roughly, a network with common administrative control, a coherent internal routing policy, and presenting a consistent external view of connectivity
 - Represented by a 16-bit number
 » Example: UUnet (701), Sprint (1239), UCSD (7377)
Inter-Domain Routing

- Network comprised of many Autonomous Systems (ASes) or domains
- To scale, use hierarchy: separate inter-domain and intra-domain routing
- Also called interior vs exterior gateway protocols (IGP/EGP)
 - IGP = RIP, OSPF
 - EGP = EGP, BGP
Inter-Domain Routing

- Border routers summarize and advertise internal routes to external neighbors and vice-versa.
- Border routers apply policy.
- Internal routers can use notion of default routes.
- Core is “default-free”; routers must have a route to all networks in the world.
Exterior Gateway Protocol

- First major inter-domain routing protocol
- Spanning tree: no loops
Problems with EGP

- In 1995 NSFnet got out of the backbone business
 - Many backbones (MCI, Sprint, AT&T…)
 - Multiconnected regional networks
 - Meshed topology, loops…

- A tree-based structure didn’t work anymore
- Need a new protocol…
What kind of protocol?

- Link state?
 - Too much state
 » Currently 11,000 ASs and > 100,000 networks
 - Relies on global metric & policy

- Distance vector?
 - May not converge; loops
 - Relies on global metric and policy

- Solution: path vector
 - Reachability protocol, no metrics
 - Route selection based on local policy
 - Route advertisements carry list of ASs
 » “I can reach UCSD through this path: AS73, AS703, AS1”
 » Automatic loop detection. Why? How?
Path Vectors

- Similar to distance vector, except send entire paths
 - e.g. 321 hears [7,12,44]
 - stronger avoidance of loops
 - supports policies (later)

- Modulo policy, shorter paths are chosen in preference to longer ones

- Reachability only – no metrics
Policies

- Choice of routes may depend on owner, cost, AUP, ...
 - Business considerations (more on this later)
- Local policy dictates what route will be chosen and what routes will be advertised!
 - e.g., X doesn’t provide transit for B, or A prefers not to use X
How BGP operates (roughly)

Establish session on TCP port 179

Exchange all active routes

Exchange incremental updates

While connection is ALIVE exchange route UPDATE messages

Pros/Cons of using TCP?
Two types of BGP neighbor relationships

- External Neighbor (eBGP) in a different Autonomous Systems
- Internal Neighbor (iBGP) in the same Autonomous System

Why do we need iBGP?
iBGP keeps eBGP consistent

- iBGP is needed to avoid routing loops within an AS
- Injecting external routes into IGP does not scale and causes BGP policy information to be lost

iBGP neighbors do not announce routes received via iBGP to other iBGP neighbors.
Important BGP attributes

- **Local pref**: Statically configured ranking of routes within AS
- **AS path**: ASs the announcement traversed
- **Origin**: Route came from IGP or EGP
- **Multi Exit Discriminator**: preference for where to exit
- **Community**: opaque data used for inter-ISP policy
- **Next-hop**: where the route was heard from
BGP Decision process

- Default decision for route selection
 - Highest local pref, shortest AS path, lowest MED, prefer eBGP over iBGP, lowest IGP cost, router id

- Many policies built on default decision process, but...
 - Possible to create arbitrary policies
 - Any criteria: BGP attributes, source address, port # is prime, …
 - Can have separate policy for inbound routes, installed routes and outbound routes
 - Limited only by power of vendor-specific routing language
Example: local pref

Higher Local preference values are more preferred.

Local preference only used in iBGP

AS 1

AS 2

AS 3

AS 4

AS 5

local pref = 100

local pref = 90

local pref = 80

13.13.0.0/16

local pref = 80

local pref = 100

local pref = 90
Example: AS Path

Shorter AS Paths are more preferred

AS701
UUnet

AS7018
AT&T

AS1239
Sprint

AS73
Univ of Wash

AS9
CMU (128.2/16)

128.2/16 9

128.2/16 9

128.2/16 9 7018

128.2/16 9 701
Shortest AS path doesn’t mean best path

Mr. BGP says that path 4 1 is better than path 3 2 1.
Example: Using IGP cost for Hot potato routing

This Router has two BGP routes to 192.44.78.0/24.

Hot potato: get traffic off of your network as Soon as possible. Go for egress 1!
Many customers want their provider to carry the bits!
Ongoing Problems w/BGP

- Instability
 - Route flapping
 - Long AS-path decision criteria defaults to DV-like behavior (bouncing)
 - Not guaranteed to converge, NP-hard to tell if it does

- Scalability still a problem
 - ~100,000 network prefixes in default-free table today
 - Tension: Want to manage traffic to very specific networks (e.g. multihomed content providers) but also want to aggregate information.

- Performance
 - Non-optimal, doesn’t balance load across paths

- Security…
Routing policy

- So far we’ve discussed mechanism…

- How and why are basic routing policies decided?
History

- First policies for political reasons
 - NSFnet AUP (even today Internet2)

- Emergence of commercial policies
 - 1994-1995 NSFnet transition
 - NSF ceases to run Internet backbone
 - Commercial carrier (MCI, Sprint, ANS) start selling IP backbone service
 - Interconnected with each other and regional networks at several public NAPs
 - Everyone talks to everyone
 - Then five years went by…
Background – Settlement

- The telephone world
 - LECs (local exchange carriers)
 - IXCs (inter-exchange carriers)
- LECs MUST provide IXCs access to customers; regulation
- When a call goes from one phone company to another:
 - Call billed to the caller
 - The money is split up among the phone systems – this is called “settlement”
On the Internet...

- No regulation
 - One ISP doesn’t have to talk to another

- Founded on “shared goodwill”
 - Pay for connectivity, not per packet
 - Not clear who should pay anyway

- No standard settlement
Peering vs Transit

- **Peering**
 - Two ISPs provide connectivity to each others customers (traditionally for free)
 - Non-transitive relationship

- **Transit**
 - One ISP provides connectivity to every place it knows about (usually for money)
Example: peering

WestNet USNet EastNet

Routing Tables
Example: transit

By EastNet purchasing transit, EastNet is announced by USNet to USNet peering and transit interconnections alike.
Example: transit (2)

Thousands of other Int’l ISPs

The entire Internet as known by USNet
The value of transit

- Not just paying for the fiber, but the connectivity
 - Remember, there is no single “backbone”
 - If you’re an ISP, how do your customers get to yahoo.com?

- Means big ISPs have more value to offer small ISPs than vice-versa
Peering and transit are really two popular points on a continuum. Some places sell “partial transit.” Other places sell “usage-based” peering. Principle issue is:

- Which routes do you give away and which do you sell? To whom? Under what conditions?
Summary

- Link-state intra-domain routing
 - Tell everyone about your neighbors
 - Low message overhead, good convergence
 - Must maintain lots of state

- Interdomain-routing
 - Exchange reachability information (plus hints)
 - Local policy to decide which path to follow

- Traffic exchange policies are a big issue $$$
 - Complicated by lack of compelling economic model (who creates value?)
 - Can have significant impact on performance
For next time...

- Mobile and Multicast routing...
- Chapter 4.2.5 and 4.4