CSE 123b
Communications Software
Spring 2002

Lecture 11: HTTP

Stefan Savage

Some slides courtesy Srini Seshan
Project #2

- On the Web page in the next 2 hours
- Due in two weeks

- Project reliable transport protocol on top of routing protocol assignment
- New fishhead option (packet loss probability)

- You will turn in assignment using your assignment 😊
HTTP Basics

- HTTP layered over TCP
- Interaction
 - Client sends request to server, followed by response from server to client
 - Requests/responses are encoded in text
- How to mark end of message?
 - Size of message \(\rightarrow\) Content-Length
 - Must know size of transfer in advance
 - Delimiter \(\rightarrow\) MIME style Content-Type
 - Server must “byte-stuff”
 - Close connection
 - Only server can do this
HTTP Messages

- Four parts
 - START LINE <CRLF>
 » Request or response
 - MESSAGE HEADER <CRLF> <CRLF>
 » 0 or more of these; meta data
 - MESSAGE BODY <CRLF>
 » Actual content
HTTP Request

- Request line
 - Method
 - GET – return URL
 - HEAD – return headers only of GET response
 - POST – send data to the server (forms, etc.)
 - URL
 - index.html by default
 - HTTP version

- Example
 GET http://www.cs.ucsd.edu/index.html HTTP/1.1
HTTP Request

- Request headers
 - Authorization – authentication info
 - Acceptable document types/encodings
 - From – user email
 - If-Modified-Since
 - Host
 - Referrer – what caused this page to be requested
 - User-Agent – client software
HTTP Request Example

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.cs.ucsd.edu
Connection: Keep-Alive
HTTP Response

- Status-line (response)
 - HTTP version
 - 3 digit response code
 » 1XX – informational
 » 2XX – success
 » 3XX – redirection
 » 4XX – client error
 » 5XX – server error
 - Reason phrase
HTTP Response

- Headers
 - Location – for redirection
 - Server – server software
 - WWW-Authenticate – request for authentication
 - Allow – list of methods supported (get, head, etc)
 - Content-Encoding – E.g x-gzip
 - Content-Length
 - Content-Type
 - Expires
 - Last-Modified
HTTP Response Example

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux)
 mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2
 PHP/4.0.1pl2 mod_perl/1.24
Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
ETag: "7a11f-10ed-3a75ae4a"
Accept-Ranges: bytes
Content-Length: 4333
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
How HTTP is used

- Browser requests main page
- Browser parses main page for inline images and content (e.g. ``)
 - Typically 4-5 of these
 - Issues additional requests to server (or other server) for additional data items
- Browser computes location of objects on page (layout)
- Browser draws each object on the screen (rendering)

- If user clicks on a link (href) then restart process
The Way Web Surfing Works...

- **Browser**
 - Check cache
 - DNS lookup
 - TCP connection
 - Request object
 - Layout
 - Render

- **DNS Server**
 - A? www.cnn.com
 - A = 207.25.71.20

- **HTTP Server**
 - SYN
 - SYN/ACK
 - GET
 - DATA

- **TCP connection**
Single Transfer Example

Client

0 RTT
Client opens TCP connection

1 RTT
Client sends HTTP request for HTML

2 RTT
Client parses HTML
Client opens TCP connection

3 RTT
Client sends HTTP request for image

4 RTT
Image begins to arrive

Server

SYN

ACK

DAT

ACK

FIN

ACK

FIN

ACK

SYN

ACK

DAT

ACK

DAT

Server reads from disk

Server reads from disk
Problems

- Short transfers are hard on TCP
 - Stuck in slow start
 - Loss recovery is poor when windows are small. Why?
- Lots of extra connections
 - Increases server state/processing
- Server also forced to keep TIME_WAIT connection state
 - Why must server keep these?
 - Tends to be an order of magnitude greater than # of active connections
Netscape Solution

- Use multiple concurrent connections to improve response time
 - Different parts of Web page arrive independently
 - Can grab more of the network bandwidth than other users
- Doesn’t necessarily improve response time
 - TCP loss recovery can be timeout dominated because windows are small
HTTP 0.9/1.0

- One request/response per TCP connection
 - Simple to implement
- Disadvantages
 - Multiple connection setups → three-way handshake each time
 » Several extra round trips added to transfer
 - Multiple slow starts
Persistent Connection Solution

- Multiplex multiple transfers onto one TCP connection
 - Serialize transfers \rightarrow client makes next request only after previous response

- How to demultiplex requests/responses
 - Content-length and delimiter
 - Block-based transmission – send in multiple length delimited blocks
 - Store-and-forward – wait for entire response and then use content-length
Persistent Connection Example

Client

0 RTT
Client sends HTTP request for HTML

1 RTT
Client parses HTML
Client sends HTTP request for image

2 RTT
Image begins to arrive

Server

DAT
Server reads from disk

ACK

DAT

ACK

DAT

DAT

Server reads from disk
Persistent connection Solution

- However, serialized requests do not improve interactive response

- Pipelining requests
 - Getall – request HTML document and all embeds
 - Requires server to parse HTML files
 - Doesn’t consider client cached documents
 - Getlist – request a set of documents
 - Implemented as a simple set of GETs
Persistent Connection Performance

- Benefits greatest for small objects
 - Up to 2x improvement in response time
- Server resource utilization reduce due to fewer connection establishments and fewer active connections
- TCP behavior improved
 - Longer connections help adaptation to available bandwidth
 - Larger congestion window improves loss recovery

- How long to keep connection open?
Remaining Problems

- Application specific solution
- Stall in transfer of one object prevents delivery of others
- Serialized transmission
 - Much of the useful information in first few bytes
 - Can “packetize” transfer over TCP
 - HTTP 1.1 recommends using range requests
 - MUX protocol provides similar generic solution
- Other solution: solve the problem at the transport layer
 - Fix TCP so it works well with multiple simultaneous connections
TCP modifications for HTTP

- **Key idea:**
 - Have different connections share congestion window information
 - Only do slow start once, recover from congestion losses together

- **Tricky issues**
 - How aggressive should it be vs using multiple connections
 - What is the difference between
 - One packet lost among four separate small TCP connections
 - One packet lost in one larger TCP connection
Typical Workload

- Multiple (typically small) objects per page
- Object sizes vary significantly
 - One measurement 1946 byte median, 13767 byte mean
 - Why so different?
 - Heavy-tailed distribution (Pareto)
 - Also true for number of embedded objects
- Popularity
 - Also heavy-tailed (Zipf)
 - Small number of very popular objects; increasingly large number of less popular objects
- Bursty interarrival pattern
HTTP Caching

- Clients often cache documents
 - Challenge: update of documents
 - If-Modified-Since requests to check
 - HTTP 0.9/1.0 used just date
 - HTTP 1.1 has file signature as well
- When/how often should the original be checked for changes?
 - Check every time? each session? Day? Etc?
 - Use Expires header
 - If no Expires, often use Last-Modified as estimate
Example Cache Check Request

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
If-None-Match: "7a11f-10ed-3a75ae4a"
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.cs.ucsd.edu
Connection: Keep-Alive
Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux)
 mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24
Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7a11f-10ed-3a75ae4a"
Web caching in general

- Caching in client
 - Keep unchanging portion of a page

- Caching in server
 - Keep popular content in memory so disk access not needed

- Caching in proxy
 - Between client and server
 - Responsible for sharing content between all users of proxy
 - Example: once one person at UCSD downloads CNN page, then everyone else can simply fetch it from proxy cache
 - Hit rates ~ 50%
So what makes the Web slow?

- Client delay (parsing, layout, rendering)
- Server delay (page generation)
- DNS Lookup/loss (local, domain, root lookup, loss)
- Propagation delay (client to server, RTT/MSS)
- Queuing delay (sum per message + impact of variability)
- Connection setup & failure (server load, client timeout)
- Congestion + TCP congestion response (1/sqrt(p))
- Impact of fragmentation/packet size (RTT/MSS)
- Receiver buffering (flow control)
- Sender buffering (sender resource allocation)
- Application serialization (waiting for gif?)

- Will the real culprit please stand up?
Answer is still unclear...

- Browser delay (layout/rendering) can be significant for some host/browser combinations…
- For highly loaded servers, server delay is an important component
- For high capacity networks, slow start is the limiting factor
- For networks with loss TCP congestion control can be the limiter
- For pages with many objects, the # of connections can be a factor
Best case TCP transfer time

TCP Slow start time

\[RTT \cdot \left\lfloor \log_{1.5} \left(\frac{B}{2W \cdot MSS} + 1 \right) \right\rfloor \]

- \(RTT \): round-trip time
- \(B \): bytes to be transferred
- \(W \): initial window
- \(MSS \): bytes in a packet
Impact of Congestion control

- Very simple model for steady state TCP transfer time

\[RTT \cdot \left(\frac{B \cdot \sqrt{p}}{MSS} \right) \]

- The models get more complicated
 - Limited receiver windows, timeouts, loss patterns, when first loss occurs, etc...

- \(RTT \): round-trip time
- \(B \): bytes to be transferred
- \(MSS \): bytes in a packet
- \(p \): packet loss rate
Summary

- HTTP built on top of TCP
 - Request response
 - Negotiates capabilities

- Connection per request is a limitation
 - Persistent connections
 - Pipelining, MUX

- Web caching
 - Check timestamp on cached copy against host/proxy
 - Caching at all levels

- Web is still slow