Class Overview

- **Course Material**
 - Class lectures, textbook readings, and handouts

- **Course Assignments**
 - Homework questions from book and handouts
 - Handed out on Tuesday due the following Tuesday
 - Potentially a small number of programming projects

- **Exams**
 - Midterm and Final
 - I will be explicit about what is covered in each
Some hints

- Come to lecture
 - Yes, I will distribute the slides online, and yes the material is in the book
 - However, lecture materials are the basis for exams

- Do the homework
 - You will have a hard time with the exams without doing the homework
 - Its 25% of your grade (easily the difference between an A and C)
Some hints (2)

- Ask questions
 - In class, via e-mail and at office hours
 - Inevitably you won’t understand something… that’s my fault, but you need to help

- Start assignments early
 - There is a statistical relationship between when you start and what grade you get.

- Sleep
Administrativa

- Web page
 http://www-cse.ucsd.edu/classes/sp02/cse123B/

- Textbook
 Computer Networks: A Systems Approach (2nd ed) by Peterson and Davie

- Discussion section
 - M 9:05-0:55 CENTR 109

- TA’s
 - John Paul Fryckman & Sanjeev Bansal

- Mailing list & office hours (TBA)
Course material

- The key aspects of modern computer networks and network services
 - Reliable communication
 - Congestion control
 - Routing (intradomain and interdomain)
 - Mobility, Naming
 - Address translation, Time synchronization
 - Web service, caching, load balancing, CDNs
 - Peer-to-peer networks
 - Security
 - ???
We will not cover

- Queuing theory
- Signals
- Hardware design
- Switching design
- Physical/data link layers
Overall goals

- Understand how to large scale, heterogeneous distributed networks are built
 - Fundamental problems
 - Established design principles
 - Standard Internet protocols and implementations
Large scale?

Internet Domain Survey Host Count

Source: Internet Software Consortium (www.isc.org)
Large scale? (2)
Heterogeneous?

- Homogenous network: the telephone system
 - Designed for making phone calls
 - Known call duration distribution, bandwidth, service constraints, service model

- Homogenous network: the Internet
 - Supports E-mail, web, e-commerce, audio, video, multi-player games…
 - Few underlying assumptions – a strength and a weakness
Distributed?

- Decentralized components
 - Must update/manage changes in state
- Long communication latency
 - Actions take time
- Partial failures
 - Must tolerate failures

“A distributed system is a system in which I can’t do my work because some computer has filed that I’ve never even heard of”
– Leslie Lamport
Some review

- Elementary components
- Circuit switching vs packet switching
- Basic network model/metrics
- Layering/protocols
 - Layering by example: fetching a Web page
Network components

- **Hosts**: endpoints that communicate
 - e.g. workstation, server, PDA
- **Links**: transmission medium
 - e.g. Ethernet, 802.11b, FDDI
- **Routers/Switches**: moves bits between links
 - Circuit switching: guaranteed channel for a session (Telephone system)
 - Packet switching: statistical multiplexing of independent pieces of data (Internet)
Circuit Switching

- Three phases
 1. circuit establishment (dial)
 2. data transfer (talk)
 3. circuit termination (hang up)
- If circuit not available: “Busy signal”
- Examples
 - Telephone networks
 - ISDN (Integrated Services Digital Networks)
Circuit Switching

- A node (switch) in a circuit switching network
Circuit switching: time division multiplexing

- Time divided in frames and frames divided in slots
- Relative slot position inside a frame determines which conversation the data belongs to
- Needs synchronization between sender and receiver
- In case of non-permanent conversations
 - Needs to dynamic bind a slot to a conversation
 - How to do this?
Packet Switching

- Data is sent in a bundle of bit-sequences, called a packet.
- Packets have the following structure:
 - Header and Trailer carry control information (e.g., destination address, check sum)
 - Each packet is passed through the network from node to node along some path (Routing)
 - At each node the entire packet is received, stored briefly, and then forwarded to the next node (Store-and-Forward Networks)
 - Typically no capacity is allocated for packets

Slide courtesy Ion Stoica
Packet Switching

- A node in a packet switching network
Packet Switching:
Statistical multiplexing

- Data from any conversation can be transmitted at any given time
- How to tell them apart?
 - use header to describe data

Slide courtesy Ion Stoica
Pro/cons of packet switching

- Efficiency
 - Can share network up to its capacity – no overhead for reserving bandwidth that is unused
 - Can support many different service types

- Low complexity
 - Don’t need to maintain state about each “call”

- Harder to guarantee bandwidth/delay

We will focus on packet switching in this class
Simple network model

Network is a pipe connection two computers

- Bandwidth, delay, overhead, error rate and message size

Basic Metrics
Network metrics

- **Bandwidth**
 - Data transmitted at a rate of R bits/sec

- **Delay or Latency**
 - Takes D seconds for bit to propagate down wire

- **Overhead**
 - Takes O secs for CPU to put message on wire

- **Error rate**
 - Probability P that message will not arrive intact

- **Message size**
 - Size M of data being transmitted
How long to send a message?

- Transmit time \(T = \frac{M}{R} + D \)
 - 10Mbps Ethernet LAN (M=1KB)
 » \(\frac{M}{R} = 1\text{ms} \), \(D \approx 5\text{us} \)
 - 155Mbps cross country ATM (M=1KB)
 » \(\frac{M}{R} = 50\text{us} \), \(D \approx 40-100\text{ms} \)

- \(R \times D \) is the “storage” of pipe
 (also called bandwidth delay product)
Layering

- What is layering?
 - Decomposition of a complex system into an ordered series of distinct abstractions
 - The services provided by a layer depend only on the services provided by the previous, less abstract, layer

- Layering in networking
 - **Service**: what a layer does (e.g. message delivery)
 - **Interface**: how to use the service (e.g. packet format)
 - **Protocol**: how the service is implemented (e.g. TCP)
 - **Protocol stack**: collection of protocols implementing a series of layers (e.g. Ethernet/IP/TCP/Web)
The OSI layering Model

- Top four layers are end-to-end
- Lower 3 layers are peer-to-peer
What the layers are for?

- **Application**: any service (e.g. WWW, SMTP)
- **Presentation**: data format conversion (e.g. XDR)
- **Session**: connection management, synchronization (e.g. SMIL)
- **Transport**: error-control, flow-control, channel multiplexing (e.g. TCP, UDP)
- **Network**: Routing (e.g. IP)
- **Datalink**: Framing, media access (e.g. Ethernet, FDDI, SONET)
- **Physical**: Transmission/modulation (e.g. 100BaseT)
Benefits of layering

- Encapsulation
 - Functionality inside a layer is self-contained; one layer doesn’t need to reason about other layers

- Modularity
 - Can replace a layer without impacting other layers
 - Lower layers can be reused by higher layers (e.g. TCP and UDP both are layered upon IP)

- One obvious drawback
 - Information hiding can produce *inefficient implementations*
Layer encapsulation

Layer N+1 packet becomes Layer N data.

End host

Application
Presentation
Session
Transport
Network
Datalink
Physical

End host

Application
Presentation
Session
Transport
Network
Datalink
Physical

Data

Layer N+1 packet

P Data
S Data
T Data
N Data
D Data
Ph Data

Data

P Data
S Data
T Data
N Data
D Data
Ph Data

April 9, 2002
CSE 123b -- Lecture 1 -- Introduction and Review
Layer Encapsulation (2)

- Typical Web packet

- Notice that layers add overhead
 - Space (headers), effective bandwidth
 - Time (processing headers, peeling the onion), latency
The Internet layering model

- So-called “hourglass” model
 - One network layer protocol
 - Significant diversity at other layers

- No presentation or session layers

- Implementations more important than interfaces
Layering by example...

- **ROUGHLY**, what happens when I click on a Web page from UCSD?

My computer www.yahoo.com

Internet
Application layer (HTTP)

- Turn click into HTTP request

GET http://www.yahoo.com/r/mp HTTP/1.1
Host: www.yahoo.com
Connection: keep-alive
...
Application layer?
Name resolution (DNS)

- Where is www.yahoo.com?

My computer (132.239.9.64)

What’s the address for www.yahoo.com

Oh, you can find it at 64.58.76.177

Local DNS server (132.239.51.18)
Transport layer (TCP)

- Break message into packets (TCP segments)
- Should be delivered reliably & in-order

GET http://www.yahoo.com/r/mp HTTP/1.1
Host: www.yahoo.com
Connection:keep-alive

“and let me know when they got there”
Network layer: IP Addressing

- Address each packet so it can traverse network and arrive at host

My computer
(132.239.9.64)

www.yahoo.com
(64.58.76.177)

<table>
<thead>
<tr>
<th>Destination</th>
<th>Source</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.58.76.177</td>
<td>132.239.9.64</td>
<td>GET htt</td>
</tr>
</tbody>
</table>
Network layer: IP Routing

- Each router forwards packet towards destination

UCSD - Sprint - UUNet - Qwest - AT&T

www.yahoo.com
(64.58.76.177)
Datalink layer (Ethernet)

- Too boring for a picture (sorry)
- Break message into frames
- Media Access Control (MAC)
- Send frame
Physical layer

- 2.4Ghz Radio
 DS/FH Radio
 (1-11Mbps)

- 802.11b Wireless Access Point

- Cat5 Cable (4 wires)
 100Base TX Ethernet
 100Mbps

- Ethernet switch/router

- To campus backbone

- 62.5/125um 850nm MMF
 1000BaseSX Ethernet
 1000Mbps
Summary

- Packets switching is an efficient and simple architecture for data communications
 - Gives up guarantees on service
- Layering is a technique for managing complexity in systems
 - Encapsulate related functionality in a layer and provide an interface to upper and lower layers
 - A model: implementations do not necessarily respect layers
For Next Time...

- Review Patterson&Davie Chap1
- Read Chap 4.1 - 4.1.4