ALGORITHMS - CSE 202 - ALL 1998
Dynamic Programming and Greedy Method Homework 2 Sample Solutions

Problem 3-9 in Skiena: Consider the following data compression technique. We have a tableteskt
strings, each of length at mokt We want to encode a data stritig of lengthn using as few text strings
as possible. For example, if our table contaiasha, abab, b) and the data string wbabbaababa, the best
way to encode it igb, abab, ba, abab, a) - a total of five code words. Give ar@d(nmk) algorithm to find
the length of the best encoding. You may assume that the string has an encoding in terms of the table.

Solution:

The subproblems involve the suffixes(could also do prefixes) of the data Btridéhen considering the
suffix D[i..n], the shortest encoding can be determined by finding which substrings starfirg atatch
any of the encoding strings, and if that encoding string was used what the smallest encoding of the rest of
the data would beL[:] will store the minimal number of encoding strings needed to encode the data string
suffix D[1..n]. Assume that the array holds them encoding strings.

1+ L[i + Len(S[j])]
if D[i..(i + Len(S[j]) — 1)] = S[sj] and(i + Len(S[j])) < n

00, otherwise

The base case B[n + 1] = 0. In order to output the encoding strings used, the index of the encoding
string that results in a minimdl[z] with be stored inE.S[i].

Inputs: array of encoding stringS, data stringD, number of encoding strings, largest size of encoding
string &, length of data string
Outputs: the length of the best encoding

FINDENCODINGLENGTH(S,D,m,k,n)
1. fori=1ton

2. Llij=o00
2. ES[i] =nil
3. /l'use results from previous suffixes to compute length
4. fori = n downtol
5. forstr=1tom
6. if D[i..(¢i + length(S[str]) — 1)] = S[str] then
7. if (1 + L[i + Len(S[str])]) < L[i] then
8. L[i] = 1+ L[i + length(S|str])]
9. ES[i] = str
10. returnL[1]

This algorithm’s worst-case running time@gnmk). There are: subproblems and to calculate each one it
is necessary to compare strings of length at mosi.
To reproduce the list of encoding strings used we can use the following algorithm.

OUTPUTSTRINGS(S,m,ES)
1. fori=1ton
2. if ES[i] # nil then
3. outputS[E STi]]



Problem 3-2 in Skiena Consider the problem of storing books on shelves in a library. The order of

the books is fixed by the cataloging system and so cannot be rearranged. Therefore, we can speak of a book
b;, wherel < i < n, that has a thicknegs and heighth;. The length of each bookshelf at the librarylis

The values ofi; are not necessarily assumed to be all the same. In this case, we have the freedom to adjust
the height of each bookshelf to that of the tallest book on the shelf. Thus, the cost of a particular layout is
the sum of the heights of the largest book on each shelf.

a) Give an example to show that the greedy algorithm of stuffing each shelf as full as possible does not
always give the minimum overall height.

Solution:Consider a set of three books, each of thickness 1, and with the first book having height 1, and the
second and third books having height 2. Suppose fhat 2. Clearly, theb; must be placed on the first
shelf. The greedy algorithm then pladeson the first shelf. This now fills the first shelf, and so we then
must places on the second shelf.

Since the largest book on each shelf is of height 2, the cost of this layout is 4. However, we can do better.
Instead of this layout, we can place the first book on the first shelf, and the last two books on the second
shelf. In this case, the first shelf has only one book of height 1, and the second shelf has books only of height
2, and so the cost of this layout is 3, which is better than what the greedy algorithm produced. Notice that
this example is simple, which is why it is the best example. The simplest example is the best example!

You should write a proof of the optimality of the greedy algorithm for the case where all the book heights
are constant (problem 3-1), and determine what in that proof goes wrong in the case of non-equal heights.

b) Give an algorithm for this problem, and analyze it's time complexity.

Solution:

We'll do this with dynamic programming, and break the problem up into sub-problems. Think about the
way in which the books are placed on the shelf. We can iteratively place the books on the shelf, at each step,
we can make a decision to either place the book on the current shelf, or to start a new shelf. Sometimes,
of course, we will have no choice: the current shelf may not be able to fit the book, and we would then be
forced to start a new shelf.

We'll solve this problem first by going backwards. We’ll loop framdown to1 and determine the
cheapest way of placing bookghroughn if we start a new shelf with book We store the best cost in
COSTYi]. Assume thaf. represents the length of the shelves, and Eha an array containing the heights
of the books. We will letCOSTYi] be the best possible cost of placing badgkroughn. For each, m can
be determined by satisfying the inequal@;”:i Hlq] < L.

costli] = 1gllci£m{008t[i + k] + max{H]Ji],..., H[i + k — 1]}}

The base case i®st[n] = H[n]. The algorithm would look something like the following:

Inputs: An array of heights H and an array of thicknesses T, both indexed fromm 1dontaining positive
real numbers. The length of each shélfis assumed to be a global constant. We further assume that
T[i] < L for eachi, 1 < i < n (no fat books that won't fit on any shelf!).

Outputs: An array COST, indexed fromton. COST]i] indicates the total cost of shelving boakkrough
n starting on a new shelf. Also, a list of numbers indicating which books should mark the first book on the
shelf.

prodecure PLACEBOOKS H, T)
var



COST : array(l..n) of real;
currentshel f : real;
1, 4, start . integer;
begin
COSTI[n] := HIn];
for i :=n — 1 downto 1 loop
currentshel f := TVi];
Appendstart to left end list.
for j :=¢+ 1ton loop
currentshel f := currentshel f + T[j];
if currentshelf < L and
max{H][i],..., H[j]} + COST[j + 1] < COSTYi] then
COST[i| = max{H[i],...,H[j]} + COST[j + 1]
NextShelf[i| =7+ 1
end if;
end for loop;
end for loop;
end PLACEBOOKS;

The outer loop goes through the different subproblems in reverse order. For each subproblem, the inner
loop iterates through the books to be placed on the shelf.

The if statement on the inside checks two things: First, if there is room to place the next book on the
shelf. If there isn't, then there is no point in even attempting to place the book on the shelf. If there is, then
we need to check to see if it will be cheaper to place the current book on the shelf we're on, or to start a new
shelf. If we want to place the book on the current shelf, then we add to the current size of the shelf we're
working on and increment the loop counter. Again, if not, then we have to add to the cost of the current
subproblem and start a new shelf.

PerformanceThe execution of the inside of the innermost for loop is bounded by a constant amount. The
number of times the innermost loop is executed is boundedbyaad the outer loop is executed— 1
times, so the performance will l&(n?).

ReconstructionTo reconstruct the book layout we store the book that will start the next sh€lfinShel f [i].
Then we place book through NeztShel f[1] — 1 on the first shelf. Then book¥ extShel f[1] through
NextShel f[NextShel f[1] — 1], etc.



Problem 3-8 in Skiena Let us assume that we are given a string= zzs ...z, 1z, Of characters
from an alphabefay, .. ., ar}, with a multiplication« defined on ordered pairs of the alphabet, withs

the length of a given string, andas the number of elements in the given alphabet. We are interested in
determining whether or not it is possible to parenthesiza such a way that the value of the resulting
expression is, wherea is some element in the alphabet.

The algorithm presented below is an iterative algorithm using dynamic programming. We will break
the problem down into sub-problems. Given a string, we want to examine all ways to break the string up
into two contiguous parts, and for each partition, we can determine whether or not the substrings can be
parenthesized to form a left and right terms so that the resulting multiplication gives us the desired product.
This algorithm can be expressed using a recursive scheme:

Recursive solutionFunction ISP (short for "is string parenthesizable”)

Inputs: A string S of alphabet elements indexed frday't to right, and a target elemenirget.

Output: parenthesizable, a boolean representing true iff the string is parenthesizable to give a result
target.

function ISP (S, left, right, target)
var
partition, alphal, alpha2 : integer;
parenthesizable : boolean;
begin
[base case]
if left = right then
if S[left] = target then
return true ;
else
return false;
end if;
end if;
[recursive case]
parenthesizable :false
for partition := left to right — 1 loop
for alphal := 1 to k loop
for alpha2 := 1 to k loop
if alphal * alpha2 = target then
if 1S P(partition, S[left..partition], target) and
ISP (partition, S[partition + 1..right], target) then
parenthesizable :=true;
end if;
end if;
end for loop;
end for loop;
end for loop;
return parenthesizable,
end ISP;



Of course, a much better way to do this, as mentioned, is a dynamic programming approach using
iteration instead of recursion. Having considered sub-problems as being the problem of determining whether
or not a given substring has a parenthesization giving a particular product, we may simply start with the
given string, and consider ALL possible contiguous substrings, and determine whether or not they have
parenthesizations giving any particular target value.

We will iterate by first checking all substrings of length 2, then by checking all substrings of length 3,
and so on until we check the given string itself. For each substring, we will have to test to see if it has a
parenthesization for any possible target value in the alphabet. As an added bonus, if the string is in fact
parenthesizable to get the given product, this algorithm will also output such a parenthesization.

Iterative solution Procedure ISP (short for "is string parenthesizable”)

Inputs: A string S of alphabet elements indexed frano n.

Outputs: parenthesizable, a triply indexed array of boolean values representing whether or not a par-
ticular substring of is parenthesizable to give a particular result. More specifically, the walueithesizable[i|[L][ R]
is true iff the substring[L.. R] has a parenthesization giving the target valyevhich is one of the alphabet
elements. The other output is;der, another triply indexed array, this one of string valuesier|i][L][R]
is defined only whemarenthesizable[i][L][R] has the valugrue, and in that case will be a string a char-
acters representing a correct parenthesizatiof[éf. R] to acheive the target valug. Notice that both
parenthesizable[i|[L][R] andorder[i][L][R] make sense only if. < R.

procedure ISP (S, n)
var
parenthesizable : array{integer,integer,integé¢rof boolean := false;
order : array{integer,integer,integérof string;
size, partition, i, j,left, right . integer,;
begin
[single length strings]
for i := 1ton loop
for j :=1to k loop
if S[¢] = a; then
parenthesizable[j][i][i] = true;
order|j][i][i] = Sli];
end if;
end for loop;
end for loop;
[strings of length greater than 1]
for size := 2to n loop
for left :=1ton — size + 1 loop
for partition := leftto left + size — 2 loop
for i :=1to k loop
for leftterm := 1to k loop
for rightterm := 1to k loop
if leftterm * rightterm = i and
parenthesizable(leftterml][left|[partition] and
parenthesizable[rightterm|[partition + 1][left + size — 1] then
parenthesizableli][left]|[left + size — 1] := true,
order[i|[left][left + size — 1] := (" concat
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order[le ftterm]|(left][partition] concat
order[rightterm][partition + 1][left + size — 1] concat
” )” ’
end if;
end for loop;
end for loop;
end for loop;
end for loop;
end for loop;
end for loop;
end ISP;

The concatoperation is simply string concatenation. This is used to produce a correct parenthesization
of a string (if one exists).

Let's look at this algorithm more carefully. The outermost two loop structures loop through the different
sub-problems, ordered first by size, and then by where the left end of the sub-problem starts. The third loop
loops through the different ways the sub-problem can be broken up. Remember that given a string, it can be
broken up into two parts a number of different ways.

The fourth nested loop will loop through tliedifferent alphabet symbols, and for each one, we wish to
check to see if a parenthesization exists for that resulting target value. Finally, the innermost two loops will
loop through the different values that each of the two terms can take on.

PerformanceT he first three nested loops are executed no morerthismes each, and then on the inside
of that, the three innermost nested loops are exechitidthes each, and the main body of the six nested
loops is executed a constant amount of time during each pass. Therefore, the performance of this algorithm
should beO(k*n?). Of course, we should check to see that the number of times the outer three loops are
executed isn’t asymptotically any LESS thah

The outermost two loops will give L@%l) —n= @ loops. (Why?) The inner most loop gives us
the number of ways that the sub-problem can be broken into two parts. For a sub-problemsotisize
will be s — 1 different way to break up the problem into two parts. The number of sub-problems afisize
n — s + 1. (Why?) Thus we can add up the total number of times that the outermost three nested loops will
execute, and we get:

n

Y (n—s+1)(s—1)

§=2
And this quantity will be a cubic polynomial. (Why?) Hence, in fact, the running time of this algorithm will
be O(k*n?). Can you do better than this?



PROBLEM 1:
Solution:

Let's say there aré stations numbered, 2, ..., k¥ between New York City and Reno. Professor Midas
should use a greedy method: He should drive past gas stations until he reaches a gas station without whose
services he would be stranded (i.e., gasless) in the next inter-station stretch of interstate. Every time Midas
stops at a station, he should fill up his tank. If Midas can go all the way to Reno using his current level
of gas, he should do so. (A more precise formulation would lead to tedious technicalities.) Let’s call this
strategyS. We characterize strategies by the gas stations that are selected and the ones that are not. Let
N (S) be the number of gas stations where Midas stops, if he follows strate@onsiderS as an array,
where forl < < k:

1, if Midas stops at (“selects”) statian
0, if Midas does not select statian

Let S[i] = {

Let’s use similar notation for other strategies.

Observe that if any two consecutive gas stations are moreithates apart (or if he starts off from New
York City without enough gas to even get to the first station, or ifitregas station is more thanmiles
away from Reno), there is no solution to Midas’ problem; in other words, there is no strategy that will work
at all for these situations. Assume that these situations do not occur.

We want to prove thalv (S) < N(U) for all possible strategigs. Let's do a proof by induction. Lef
be an optimal strategy in the sense thd") < N (U) for all possible strategies.

Let P(i) be the property “There exists a stratefysuch that:
(*) N(T;) < N(T) (i.e.,T; is at least as good a strategyZs and
(**) T;[4] = S[yj] for 1 < 5 < (i.e., T; makes the same station selection decisionS ap to and including
stations).”

Base casei = 1. Let T3 be the same strategy &5 but setT)[1] equal toS[1]. There are three cases.
Case 1:S[1] = T[1]: In this case]1[1] = S[1] = T'[1], soT} andT are the same strategy. Th7}) =
N(T) trivially, and T} satisfies (*). Also, sincé’[1] = S[1] by construction,7; also satisfies (**).
Case 2:5[1] = 1 andT'[1] = 0: In this case, strateg§ selects station 1, buf' does not. However, since
S is the strategy that dictates that Midas successively selects the furthest gas station that will keep him from
being stranded, that means that fhestrategy will leave Midas stranded in the next stretch of interstate,
before he can reach station 2 or Reno, whichever comes firsian not be optimal, so this case can not
happen. Case ¥[1] = 0 andT[1] = 1: In this case, strategy¥’ selects station 1, buf does not (which
means that Midas will not get stranded before reaching station 2 or Reno, whichever comes first). We let
Ti[1] = S[1] = 0, soT; also does not select station 1. We alsd5€2] equal to 1, to guarantee thag will
not leave Midas stranded. @f= 1, Midas can go all the way to Reno.) We know that: T1and7; make
the same selection decisions for the other statigns @), (2) T' selects station 1 buf; does not, and (3)
T; selects station 2 arffl may or may not. In any cas&/(7,) < N(T). So,T; satisfies (*). Also, since
Ti[1] = S[1] by construction]; also satisfies (**).

Inductive hypothesisAssumeP (i) is true. Show thai(i + 1) is true ( < ¢ < k): “There exists a
strategyT;; such that:
(***) N(T;4+1) < N(T) (i.e., T;11 is at least as good a strategyds and
(***) T;11[j] = S[j] for 1 < j < i+ 1 (i.e., T;11 makes the same station selection decisionS ap to
and including station + 1).”

Inductive stepBy the inductive hypothesis, there exists a stratEgiat satisfies (*) and (**). Le¥;
be the strategy such that:




T[], 1<j<i
Tl =S, j=i+1
Tilj], i+1<j<k

In other wordsT; is the same strategy d%, but setT;,[i + 1] equal toS[: 4 1]. Think of T; as the

“old” optimal strategy and;,; as the “new” optimal strategy that we are developing from the “old” one.
There are three cases. Case&li:+ 1] = T;[i + 1]: In this caseZj1[i + 1] = S[i + 1] = T;[i + 1], soT; 11
andT; are the same strategy. ThD§T;.1) = N(T;) < N(T) (by the inductive hypothesis), arid
satisfies (***). Also, sincel;[i+ 1] = S[i+ 1] by construction, an,[j] = T;[j] = S[j]for1 <j <1
by the inductive hypothesis, thefi,, also satisfies (****). Case 2S[i + 1] = 1 andT;[i + 1] = 0: In
this case, strategy selects statiorn + 1, but 7; does not. However, sincg is the strategy that dic-
tates that Midas successively selects the furthest gas station that will keep him from being stranded, that
means that thd’; strategy will leave Midas stranded in the next stretch of interstate, before he can reach
station: + 2 or Reno, whichever comes first. (Remember that, by the inductive hypotfigsigade the
same selection decisions &gor the firsti stations.)7; can not be optimal, so this case can not happen.
Case 3:S[i + 1] = 0 andT;[i + 1] = 1: In this case, strated¥; selects station+ 1, but.S does not (which
means that Midas will not get stranded before reaching statidhor Reno, whichever comes first; remem-
ber the inductive hypothesis). We [Bt,;[i + 1] = S[i + 1] = 0, soT;;, also does not select station- 1.
We also sef;[i + 2] equal to 1, to guarantee thAt,; will not leave Midas stranded. (K = i + 1, Midas
can go all the way to Reno.) We know that: ()andT;,; make the same selection decisions for the other
stations { # ¢ + 1,7 + 2), (2) T; selects station + 1 but 7;,; does not, and (3] selects statiom + 2
and7; may or may not. In any cas&(T;.1) < N(T;) < N(T') (by the inductive hypothesis). S&;
satisfies (***). Also, sincel;,[i+ 1] = S[i+ 1] by construction, and;[j] = T;[j] = S[j]for1 <j <4
by the inductive hypothesis, thdh, , also satisfies (****).

Conclusion We may now conclude thad (k) is true. In other words, there exists a straté&gysuch that:
(1) N(Ty) < N(T) (i.e., Ty is at least as good a strategy8ys and
(2) Ty[4] = S[j] for 1 < j < k (i.e., T, makes the same station selection decisionS @ap to and including
stationk; THAT MEANS THAT T, AND S ARE THE SAME STRATEGY!!!) So, we now know that
(the strategy formerly known &&,) is at least as good a strategy as our optimal straf&égy the sense that
S selects no more gas stations ttfianloes [while not stranding Midas]. S8, itself is an optimal strategy.




