
ALGORITHMS - CSE 202 - FALL 1998
Dynamic Programming and Greedy Method Homework 2 Sample Solutions

Problem 3-9 in Skiena: Consider the following data compression technique. We have a table ofm text
strings, each of length at mostk. We want to encode a data stringD of lengthn using as few text strings
as possible. For example, if our table contains(a; ba; abab; b) and the data string isbababbaababa, the best
way to encode it is(b; abab; ba; abab; a) - a total of five code words. Give andO(nmk) algorithm to find
the length of the best encoding. You may assume that the string has an encoding in terms of the table.

Solution:
The subproblems involve the suffixes(could also do prefixes) of the data stringD. When considering the

suffix D[i::n], the shortest encoding can be determined by finding which substrings starting atD[i] match
any of the encoding strings, and if that encoding string was used what the smallest encoding of the rest of
the data would be.L[i] will store the minimal number of encoding strings needed to encode the data string
suffixD[1::n]. Assume that the arrayS holds them encoding strings.

L[i] = min
1�j�m

8>>>><
>>>>:

1 + L[i+ Len(S[j])]

if D[i::(i + Len(S[j]) � 1)] = S[j] and(i+ Len(S[j])) � n

1;otherwise

The base case isL[n + 1] = 0. In order to output the encoding strings used, the index of the encoding
string that results in a minimalL[i] with be stored inES[i].

Inputs: array of encoding stringsS, data stringD, number of encoding stringsm, largest size of encoding
stringk, length of data stringn
Outputs: the length of the best encoding

FINDENCODINGLENGTH(S,D,m,k,n)

1. for i = 1 to n
2. L[i] =1

2. ES[i] = nil

3. // use results from previous suffixes to compute length
4. for i = n downto1
5. for str = 1 tom
6. if D[i::(i + length(S[str])� 1)] = S[str] then
7. if (1 + L[i+ Len(S[str])]) < L[i] then
8. L[i] = 1 + L[i+ length(S[str])]

9. ES[i] = str

10. returnL[1]

This algorithm’s worst-case running time is�(nmk). There aren subproblems and to calculate each one it
is necessary to comparem strings of length at mostk.

To reproduce the list of encoding strings used we can use the following algorithm.

OUTPUTSTRINGS(S,m,ES)

1. for i = 1 to n
2. if ES[i] 6= nil then
3. outputS[ES[i]]

1

Problem 3-2 in Skiena Consider the problem of storingn books on shelves in a library. The order of
the books is fixed by the cataloging system and so cannot be rearranged. Therefore, we can speak of a book
bi, where1 � i � n, that has a thicknessti and heighthi. The length of each bookshelf at the library isL.
The values ofhi are not necessarily assumed to be all the same. In this case, we have the freedom to adjust
the height of each bookshelf to that of the tallest book on the shelf. Thus, the cost of a particular layout is
the sum of the heights of the largest book on each shelf.

a) Give an example to show that the greedy algorithm of stuffing each shelf as full as possible does not
always give the minimum overall height.

Solution:Consider a set of three books, each of thickness 1, and with the first book having height 1, and the
second and third books having height 2. Suppose thatL = 2. Clearly, theb1 must be placed on the first
shelf. The greedy algorithm then placesb2 on the first shelf. This now fills the first shelf, and so we then
must placeb3 on the second shelf.

Since the largest book on each shelf is of height 2, the cost of this layout is 4. However, we can do better.
Instead of this layout, we can place the first book on the first shelf, and the last two books on the second
shelf. In this case, the first shelf has only one book of height 1, and the second shelf has books only of height
2, and so the cost of this layout is 3, which is better than what the greedy algorithm produced. Notice that
this example is simple, which is why it is the best example. The simplest example is the best example!

You should write a proof of the optimality of the greedy algorithm for the case where all the book heights
are constant (problem 3-1), and determine what in that proof goes wrong in the case of non-equal heights.

b) Give an algorithm for this problem, and analyze it’s time complexity.

Solution:
We’ll do this with dynamic programming, and break the problem up into sub-problems. Think about the
way in which the books are placed on the shelf. We can iteratively place the books on the shelf, at each step,
we can make a decision to either place the book on the current shelf, or to start a new shelf. Sometimes,
of course, we will have no choice: the current shelf may not be able to fit the book, and we would then be
forced to start a new shelf.

We’ll solve this problem first by going backwards. We’ll loop fromn down to1 and determine the
cheapest way of placing booksi throughn if we start a new shelf with booki. We store the best cost in
COST [i]. Assume thatL represents the length of the shelves, and thatH is an array containing the heights
of the books. We will letCOST [i] be the best possible cost of placing booki throughn. For eachi, m can
be determined by satisfying the inequality,

Pm
q=iH[q] � L.

cost[i] = min
1�k�m

fcost[i+ k] + maxfH[i]; :::;H[i + k � 1]gg

The base case iscost[n] = H[n]. The algorithm would look something like the following:

Inputs: An array of heights H and an array of thicknesses T, both indexed from 1 ton, containing positive
real numbers. The length of each shelfL is assumed to be a global constant. We further assume that
T [i] � L for eachi, 1 � i � n (no fat books that won’t fit on any shelf!).

Outputs: An array COST, indexed from1 ton. COST[i] indicates the total cost of shelving booksi through
n starting on a new shelf. Also, a list of numbers indicating which books should mark the first book on the
shelf.

prodecure PLACEBOOKS (H;T)
var

2

COST : array(1::n) of real;
currentshelf : real;
i; j; start : integer;

begin
COST[n] := H[n];
for i := n� 1 downto 1 loop
currentshelf := T [i];

Appendstart to left end list.
for j := i+ 1 to n loop
currentshelf := currentshelf + T [j];
if currentshelf � L and
maxfH[i]; : : : ;H[j]g + COST [j + 1] � COST [i] then

COST [i] = maxfH[i]; : : : ;H[j]g + COST [j + 1]

NextShelf [i] = j + 1

end if;
end for loop;

end for loop;
endPLACEBOOKS;

The outer loop goes through the different subproblems in reverse order. For each subproblem, the inner
loop iterates through the books to be placed on the shelf.

The if statement on the inside checks two things: First, if there is room to place the next book on the
shelf. If there isn’t, then there is no point in even attempting to place the book on the shelf. If there is, then
we need to check to see if it will be cheaper to place the current book on the shelf we’re on, or to start a new
shelf. If we want to place the book on the current shelf, then we add to the current size of the shelf we’re
working on and increment the loop counter. Again, if not, then we have to add to the cost of the current
subproblem and start a new shelf.

Performance:The execution of the inside of the innermost for loop is bounded by a constant amount. The
number of times the innermost loop is executed is bounded by an, and the outer loop is executedn � 1

times, so the performance will beO(n2).

Reconstruction:To reconstruct the book layout we store the book that will start the next shelf inNextShelf [i].
Then we place book1 throughNextShelf [1] � 1 on the first shelf. Then booksNextShelf [1] through
NextShelf [NextShelf [1]� 1], etc.

3

Problem 3-8 in Skiena Let us assume that we are given a stringx = x1x2 : : : xn�1xn of characters
from an alphabetfa1; : : : ; akg, with a multiplication� defined on ordered pairs of the alphabet, withn as
the length of a given string, andk as the number of elements in the given alphabet. We are interested in
determining whether or not it is possible to parenthesizex in such a way that the value of the resulting
expression isa, wherea is some element in the alphabet.

The algorithm presented below is an iterative algorithm using dynamic programming. We will break
the problem down into sub-problems. Given a string, we want to examine all ways to break the string up
into two contiguous parts, and for each partition, we can determine whether or not the substrings can be
parenthesized to form a left and right terms so that the resulting multiplication gives us the desired product.
This algorithm can be expressed using a recursive scheme:

Recursive solution: Function ISP (short for ”is string parenthesizable”)
Inputs: A stringS of alphabet elements indexed fromleft to right, and a target elementtarget.
Output: parenthesizable, a boolean representing true iff the string is parenthesizable to give a result

target.

function ISP (S; left; right; target)
var

partition; alpha1; alpha2 : integer;
parenthesizable : boolean;

begin
[base case]
if left = right then

if S[left] = target then
return true ;

else
return false;

end if;
end if;
[recursive case]
parenthesizable :=false;
for partition := left to right� 1 loop

for alpha1 := 1 to k loop
for alpha2 := 1 to k loop

if alpha1 � alpha2 = target then
if ISP (partition; S[left::partition]; target) and
ISP (partition; S[partition+ 1::right]; target) then
parenthesizable :=true;

end if;
end if;

end for loop;
end for loop;

end for loop;
return parenthesizable;

end ISP;

4

Of course, a much better way to do this, as mentioned, is a dynamic programming approach using
iteration instead of recursion. Having considered sub-problems as being the problem of determining whether
or not a given substring has a parenthesization giving a particular product, we may simply start with the
given string, and consider ALL possible contiguous substrings, and determine whether or not they have
parenthesizations giving any particular target value.

We will iterate by first checking all substrings of length 2, then by checking all substrings of length 3,
and so on until we check the given string itself. For each substring, we will have to test to see if it has a
parenthesization for any possible target value in the alphabet. As an added bonus, if the string is in fact
parenthesizable to get the given product, this algorithm will also output such a parenthesization.

Iterative solution: Procedure ISP (short for ”is string parenthesizable”)
Inputs: A stringS of alphabet elements indexed from1 to n.
Outputs: parenthesizable, a triply indexed array of boolean values representing whether or not a par-

ticular substring ofS is parenthesizable to give a particular result. More specifically, the valueparenthesizable[i][L][R]

is true iff the substringS[L::R] has a parenthesization giving the target valueai, which is one of the alphabet
elements. The other output is,order, another triply indexed array, this one of string values.order[i][L][R]

is defined only whenparenthesizable[i][L][R] has the valuetrue, and in that case will be a string a char-
acters representing a correct parenthesization ofS[L::R] to acheive the target valueai. Notice that both
parenthesizable[i][L][R] andorder[i][L][R] make sense only ifL � R.

procedure ISP (S; n)
var

parenthesizable : arrayfinteger,integer,integerg of boolean := false;
order : arrayfinteger,integer,integerg of string;
size; partition; i; j; left; right : integer;

begin
[single length strings]
for i := 1 to n loop

for j := 1 to k loop
if S[i] = ai then
parenthesizable[j][i][i] = true;
order[j][i][i] = S[i];

end if;
end for loop;

end for loop;
[strings of length greater than 1]
for size := 2 to n loop

for left := 1 to n� size+ 1 loop
for partition := left to left+ size� 2 loop

for i := 1 to k loop
for leftterm := 1 to k loop

for rightterm := 1 to k loop
if leftterm � rightterm = i and

parenthesizable[leftterm][left][partition] and
parenthesizable[rightterm][partition+ 1][left+ size� 1] then

parenthesizable[i][left][left+ size� 1] := true;
order[i][left][left+ size� 1] := "(" concat

5

order[leftterm][left][partition] concat
order[rightterm][partition+ 1][left+ size� 1] concat
")";

end if;
end for loop;

end for loop;
end for loop;

end for loop;
end for loop;

end for loop;
end ISP;

Theconcatoperation is simply string concatenation. This is used to produce a correct parenthesization
of a string (if one exists).

Let’s look at this algorithm more carefully. The outermost two loop structures loop through the different
sub-problems, ordered first by size, and then by where the left end of the sub-problem starts. The third loop
loops through the different ways the sub-problem can be broken up. Remember that given a string, it can be
broken up into two parts a number of different ways.

The fourth nested loop will loop through thek different alphabet symbols, and for each one, we wish to
check to see if a parenthesization exists for that resulting target value. Finally, the innermost two loops will
loop through the different values that each of the two terms can take on.

Performance:The first three nested loops are executed no more thann times each, and then on the inside
of that, the three innermost nested loops are executedk times each, and the main body of the six nested
loops is executed a constant amount of time during each pass. Therefore, the performance of this algorithm
should beO(k3n3). Of course, we should check to see that the number of times the outer three loops are
executed isn’t asymptotically any LESS thann3.

The outermost two loops will give usn(n+1)
2

�n =
n(n�1)

2
loops. (Why?) The inner most loop gives us

the number of ways that the sub-problem can be broken into two parts. For a sub-problem of sizes, there
will be s� 1 different way to break up the problem into two parts. The number of sub-problems of sizes is
n� s+ 1. (Why?) Thus we can add up the total number of times that the outermost three nested loops will
execute, and we get:

nX
s=2

(n� s+ 1)(s� 1)

And this quantity will be a cubic polynomial. (Why?) Hence, in fact, the running time of this algorithm will
beO(k3n3). Can you do better than this?

6

PROBLEM 1:

Solution:

Let’s say there arek stations numbered1; 2; :::; k between New York City and Reno. Professor Midas
should use a greedy method: He should drive past gas stations until he reaches a gas station without whose
services he would be stranded (i.e., gasless) in the next inter-station stretch of interstate. Every time Midas
stops at a station, he should fill up his tank. If Midas can go all the way to Reno using his current level
of gas, he should do so. (A more precise formulation would lead to tedious technicalities.) Let’s call this
strategyS. We characterize strategies by the gas stations that are selected and the ones that are not. Let
N(S) be the number of gas stations where Midas stops, if he follows strategyS. ConsiderS as an array,
where for1 � i � k:

Let S[i] =

(
1; if Midas stops at (“selects”) stationi

0; if Midas does not select stationi

Let’s use similar notation for other strategies.
Observe that if any two consecutive gas stations are more thann miles apart (or if he starts off from New

York City without enough gas to even get to the first station, or if thekth gas station is more thann miles
away from Reno), there is no solution to Midas’ problem; in other words, there is no strategy that will work
at all for these situations. Assume that these situations do not occur.

We want to prove thatN(S) � N(U) for all possible strategiesU . Let’s do a proof by induction. LetT
be an optimal strategy in the sense thatN(T) � N(U) for all possible strategiesU .

Let P (i) be the property “There exists a strategyTi such that:
(*) N(Ti) � N(T) (i.e.,Ti is at least as good a strategy asT), and
(**) Ti[j] = S[j] for 1 � j � i (i.e.,Ti makes the same station selection decisions asS up to and including
stationi).”

Base case:i = 1. Let T1 be the same strategy asT , but setT1[1] equal toS[1]. There are three cases.
Case 1:S[1] = T [1]: In this case,T1[1] = S[1] = T [1], soT1 andT are the same strategy. ThusN(T1) =

N(T) trivially, and T1 satisfies (*). Also, sinceT1[1] = S[1] by construction,T1 also satisfies (**).
Case 2:S[1] = 1 andT [1] = 0: In this case, strategyS selects station 1, butT does not. However, since
S is the strategy that dictates that Midas successively selects the furthest gas station that will keep him from
being stranded, that means that theT strategy will leave Midas stranded in the next stretch of interstate,
before he can reach station 2 or Reno, whichever comes first.T can not be optimal, so this case can not
happen. Case 3:S[1] = 0 andT [1] = 1: In this case, strategyT selects station 1, butS does not (which
means that Midas will not get stranded before reaching station 2 or Reno, whichever comes first). We let
T1[1] = S[1] = 0, soT1 also does not select station 1. We also setT1[2] equal to 1, to guarantee thatT1 will
not leave Midas stranded. (Ifk = 1, Midas can go all the way to Reno.) We know that: (1)T andT1 make
the same selection decisions for the other stations (j � 3), (2) T selects station 1 butT1 does not, and (3)
T1 selects station 2 andT may or may not. In any case,N(T1) � N(T). So,T1 satisfies (*). Also, since
T1[1] = S[1] by construction,T1 also satisfies (**).

Inductive hypothesis.AssumeP (i) is true. Show thatP (i + 1) is true (1 � i < k): “There exists a
strategyTi+1 such that:
(***) N(Ti+1) � N(T) (i.e.,Ti+1 is at least as good a strategy asT), and
(****) Ti+1[j] = S[j] for 1 � j � i + 1 (i.e.,Ti+1 makes the same station selection decisions asS up to
and including stationi+ 1).”

Inductive step.By the inductive hypothesis, there exists a strategyTi that satisfies (*) and (**). LetTi+1
be the strategy such that:

7

Ti+1[j] =

8><
>:
Ti[j]; 1 � j � i

S[j]; j = i+ 1

Ti[j]; i+ 1 < j � k

In other words,Ti+1 is the same strategy asTi, but setTi+1[i + 1] equal toS[i+ 1]. Think of Ti as the
“old” optimal strategy andTi+1 as the “new” optimal strategy that we are developing from the “old” one.
There are three cases. Case 1:S[i+ 1] = Ti[i+ 1]: In this case,Ti+1[i+1] = S[i+1] = Ti[i+1], soTi+1
andTi are the same strategy. ThusN(Ti+1) = N(Ti) � N(T) (by the inductive hypothesis), andTi+1
satisfies (***). Also, sinceTi+1[i+1] = S[i+1] by construction, andTi+1[j] = Ti[j] = S[j] for 1 � j � i

by the inductive hypothesis, thenTi+1 also satisfies (****). Case 2:S[i+ 1] = 1 andTi[i+ 1] = 0: In
this case, strategyS selects stationi + 1, but Ti does not. However, sinceS is the strategy that dic-
tates that Midas successively selects the furthest gas station that will keep him from being stranded, that
means that theTi strategy will leave Midas stranded in the next stretch of interstate, before he can reach
stationi + 2 or Reno, whichever comes first. (Remember that, by the inductive hypothesis,Ti made the
same selection decisions asS for the firsti stations.)Ti can not be optimal, so this case can not happen.
Case 3:S[i+ 1] = 0 andTi[i+ 1] = 1: In this case, strategyTi selects stationi+ 1, butS does not (which
means that Midas will not get stranded before reaching stationi+2 or Reno, whichever comes first; remem-
ber the inductive hypothesis). We letTi+1[i+ 1] = S[i+ 1] = 0, soTi+1 also does not select stationi+ 1.
We also setTi+1[i+2] equal to 1, to guarantee thatTi+1 will not leave Midas stranded. (Ifk = i+1, Midas
can go all the way to Reno.) We know that: (1)Ti andTi+1 make the same selection decisions for the other
stations (j 6= i + 1; i + 2), (2) Ti selects stationi + 1 butTi+1 does not, and (3)Ti+1 selects stationi + 2

andTi may or may not. In any case,N(Ti+1) � N(Ti) � N(T) (by the inductive hypothesis). So,Ti+1
satisfies (***). Also, sinceTi+1[i+1] = S[i+1] by construction, andTi+1[j] = Ti[j] = S[j] for 1 � j � i

by the inductive hypothesis, thenTi+1 also satisfies (****).
Conclusion.We may now conclude thatP (k) is true. In other words, there exists a strategyTk such that:

(1)N(Tk) � N(T) (i.e.,Tk is at least as good a strategy asT), and
(2) Tk[j] = S[j] for 1 � j � k (i.e.,Tk makes the same station selection decisions asS up to and including
stationk; THAT MEANS THAT Tk AND S ARE THE SAME STRATEGY!!!) So, we now know thatS
(the strategy formerly known asTk) is at least as good a strategy as our optimal strategyT , in the sense that
S selects no more gas stations thanT does [while not stranding Midas]. So,S itself is an optimal strategy.

8

