1 Multiplication

Consider two unsigned binary numbers X and Y. We want to multiply these numbers. The basic algorithm is similar to the one used in multiplying the numbers on pencil and paper. The main operations involved are shift and add.

Recall that the ‘pencil-and-paper’ algorithm is inefficient in that each product term (obtained by multiplying each bit of the multiplier to the multiplicand) has to be saved till all such product terms are obtained. In machine implementations, it is desirable to add all such product terms to form the partial product. Also, instead of shifting the product terms to the left, the partial product is shifted to the right before the addition takes place. In other words, if P_i is the partial product after i steps and if Y is the multiplicand and X is the multiplier, then

$$P_i \leftarrow P_i + x_j \cdot Y$$

and

$$P_{i+1} \leftarrow P_i \cdot 2^{-1}$$

and the process repeats.

Note that the multiplication of signed magnitude numbers require a straightforward extension of the unsigned case. The magnitude part of the product can be computed just as in the unsigned magnitude case. The sign p_0 of the product P is computed from the signs of X and Y as

$$p_0 \leftarrow x_0 \oplus y_0$$

2 Two’s complement Multiplication - Robertson’s Algorithm

Consider the case that we want to multiply two 8-bit numbers $X = x_0x_1\ldots x_7$ and $Y = y_0y_1\ldots y_7$. Depending on the sign of the two operands X and Y, there are 4 cases to be considered:

- $x_0 = y_0 = 0$, that is, both X and Y are positive. Hence, multiplication of these numbers is similar to the multiplication of unsigned numbers. In other words, the product P is computed in a series of add-and-shift steps of the form

$$P_i \leftarrow P_i + x_j \cdot Y$$

$$P_{i+1} \leftarrow P_i \cdot 2^{-1}$$

Note that all the partial product are non-negative. Hence, leading 0s are introduced during right shift of the partial product.
* * $x_0 = 1, y_0 = 0$, that is, X is negative and Y is positive. In this case, the partial product is always positive (till the sign bit x_0 is used). In the final step, a subtraction is performed. That is,

$$P \leftarrow P - Y$$

* $x_0 = 0, y_0 = 1$, that is, X is positive and Y is negative. In this case, the partial product is positive and hence leading 0s are shifted into the partial product until the first 1 in X is encountered. Multiplication of Y by this 1, and addition to the result causes the partial product to be negative, from which point on leading 1s are shifted in (rather than 0s).

* $x_0 = 1, y_0 = 1$, that is, both X and Y are negative. Once again, leading 1s are shifted into the partial product whenever the partial product is negative. Also, since X is negative, the correction step (subtraction as the last step) is also performed.

Important: Recall the difference in the correction steps between multiplication of two integers and two fractions. In the case of two integers, the correction step involves subtraction and shift right. Whereas, in the case of fractions, the correction step involves subtraction and setting $Q(7) \leftarrow 0$.

3 Division

In a fixed point division of two numbers, a divisor V and a dividend D are given. The goal of division is to compute quotient Q and remainder R such that

$$D = Q \times V + R$$

One of the simplest methods of division is the sequential digit-by-digit algorithm. Here, in step i, the quotient bit q_i is determined by comparing the value of $2^{-i} V$, which represents the divisor shifted i bits to the right, to the partial remainder R_i. The quotient bit q_i is set to 1 if 2^{-i} is less than R_i, else it is set to 0. Thus, the partial remainder is computed using the expression:

$$R_{i+1} = R_i - q_i \times 2^{-i} \times V$$

This is equivalent to

$$R_{i+1} = 2R_i - q_i \times V$$

As it is clear from the basic approach described here, the value of the quotient bit is determined by performing a trial subtraction of the form $2R_i - V$. If this is positive, then $q_i = 1$, otherwise $q_i = 0$. Note that when $q_i = 0$, the result of the trial subtraction is $2R_i - V$, but the new partial remainder should be $R_{i+1} = 2R_i$. Based on how this discrepancy is handled in the computations of q_i and R_{i+1}, the division algorithm can be divided into two parts:

3.1 Restoring Division

Here, at every step, the operation

$$R_{i+1} = 2R_i - V$$
is performed. When the result of the subtraction is negative, a restoring addition is performed as follows:

\[R_{i+1} = R_i + V \]

In other words, the partial remainder is restored to the correct value if the appropriate quotient bit is 0.

3.2 Non-Restoring Division

It is based on the observation that a restoring step of the form

\[R_i = R_i + V \]

followed by the next partial remainder calculation step

\[R_{i+1} = 2R_i - V \]

can be merged into a single operation

\[R_{i+1} = 2R_i + V \]

Thus, when the quotient bit \(q_i = 1 \), then the next partial remainder is computed by performing a subtraction. However, when the quotient bit \(q_i = 0 \), rather than restoring the partial remainder, the next step is the addition of the divisor to the partial remainder, and not a subtraction.

Important Note: In the case of non-restoring division, note that when the last quotient bit is 0 (that is, \(q_0 = 1 \)), then as a result of the trial subtraction, the partial remainder is negative. Hence, a correction step is necessary to restore the remainder value. Note that this is necessary only for the last step.

The restoring and non-restoring division techniques described here are applicable to unsigned integers as well as sign-magnitude numbers.