CSE105 Sample Questions for Final Exam

1. Show that if
 \[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \phi \} \]
 were decidable, then
 \[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TM with } L(M_1) = L(M_2) \} \]
 is also decidable.

2. Label the following T (true) or F (false):
 a. For every DFA there is a CFG which derives the same language as that of the DFA.
 b. In using the subset construction to construct a DFA that accepts the same language as an
 NFA, the DFA will never have more states than the NFA.
 c. Every language can be derived from a CFG.
 d. Every decidable language is Turing-recognizable.
 e. The complement of any Turing-recognizable language is Turing-recognizable.

3. Write a regular expression for floating point literals, which consist of a decimal point,
 any sequence of decimal digits, an exponent, and a type. A decimal integer consists of one or
 more of decimal digits without leading zeroes. An exponent consists of the characters “e” or “E”,
 followed by an optional + or −, followed by a decimal integer. A type consists of the keywords
double or float. You can use the shorthand notation for regular expressions if you wish.

4. Construct a state diagram of an NFA accepting the set described by the following regular expression
 over the alphabet \{ 0,1 \}, indicating the start and final state(s) of the NFA:
 \[(00)^*011 \mid 01\]

5. Construct a parse tree for the string \(\forall x \exists y [P]\) from the following grammar with start symbol S, and
 whose set of terminals is \(\{ \forall, \exists, (,), [,] , x, y, P \} \).

 \[
 S \rightarrow Q[F] \\
 Q \rightarrow \forall LQ \mid \exists LQ \mid e \\
 L \rightarrow x \mid y \\
 F \rightarrow P
 \]

6. Construct a CFG that generates the set of strings over the alphabet \{ 0,1 \} with an even number of
 0’s and any number of 1’s. \(\epsilon, 0000 \text{ and } 010111 \text{ should be in the set, but } 000 \text{ and } 011 \text{ should not.}\)
 Indicate the start symbol of the CFG.

7. Fill in the blanks:
 a. A derivation is rightmost if
 b. Diagonalization is useful for
 c. The definition of mapping reducible is
 d. The main output of a parser is
 e. The Church-Turing thesis is