Why Use Grammars?

Precise specification of language structure

Ex. Begin-End hierarchy

Certain classes of grammars have efficient automatic tools to construct parsers for languages

Ex. Bison

Provides feedback to language designer

See if new construct difficult to handle

Adaptable

Easy to add new language constructs

Front End of Compiler

```
source

Lexer

Token Stream

Parser

Parse Tree

Rest of Compiler
```

Main Goal of Parser: Produce parse tree via grammar
Example: Context-free Grammar

| Rules | E → a
	E → EAE
	A → +
	A → *
Terminals	+ * a
Variables	E A
Start Variable	E

Context-free since can apply rule to variable in any context. Use rules starting from start variable to derive strings.

Using Context-free Grammar

\[E \rightarrow EAE \rightarrow aAE \rightarrow a+E \rightarrow a+EAE \rightarrow a+aAE \rightarrow \]
\[a+aE \rightarrow a+a*a \]

Derivation of terminal string \(a+a*a \)

Can abbreviate the rules:

\[E \rightarrow a \quad \text{written as} \quad E \rightarrow a \mid EAE \]

Can derive string of variables and terminals Language of grammar is the set of terminal strings it can derive
Formal Definition of Context-free Grammar

A CFG G is a 4-tuple (V, Σ, R, S) where,

1. V is a finite set of variables (non-terminals)
2. Σ is a finite set of terminals
3. R is a set of rules (productions) of the form variable \rightarrow string of terminals, variables
4. S in V is the start variable

Ex. $V = \{E, T, F\}$
$\Sigma = \{a, +, x, (,)\}$
R
$E \rightarrow E + T \mid T$
$T \rightarrow T x F \mid F$
$F \rightarrow (E) \mid a$
Start E

Derive?

Derivations and Languages

Given CFG G with start var. S

$uA v \Rightarrow uvw$ if $A \rightarrow w$ is a rule of G and u, v, w are strings of variables and terminals.

$u \Rightarrow^* v$ if $u = v$, or there is a sequence $u 1 ... u k$

$u = u 1 \Rightarrow u 2 \ldots u k$ if $u = v$

$L(G) = \{w \in \Sigma^* | S \Rightarrow^* w\}$

G_1 is equivalent to G_2 if $L(G_1) = L(G_2)$

Leftmost Derivation:

Derivation in which always replace leftmost var.

Ex. $a + a + a$

May be many derivations of same string!

Rightmost, leftmost, other
Parse Trees

Similar to derivation, ignores order of replacement

Rule: \(A \rightarrow X_1 X_2 X_3 \)

Parse tree:

```
          A
         / \
        X1   X2   X3
```

Ex.

```
      E
     / \   (leftmost deriv. \( a+a^*a \))
    E   A   E
   / \   /   \
  a + a * a
```

Unique leftmost (rightmost) derivation

Parse tree

Formal Definition of Parse Tree

Given a CFG \(G \), a parse tree is a labelled tree with

1. a single root labelled with the start variable
2. Leaves that are labelled by terminal symbols
3. Interior nodes labelled by variables
4. If the parse tree contains

```
          A
         / \
        X_1  X_2  X_3  ...  X_m
```

Then \(A \rightarrow X_1 X_2 X_3 ... X_m \) is a rule of \(G \).
Ambiguity of a Grammar

Ex. $a + a^*a$

Leaves the same: derive same string

Correspond to $a + (a^*a)$ and $(a + a)^*a$

May yield different answers if evaluated!

Def. G is ambiguous if there is some string w in Σ^* with two different parse trees.

Ambiguity of a Grammar?

Ex. $S \rightarrow (S) \mid SS \mid \varepsilon$ where Σ is $\{\varepsilon, (,)\}$

What is $L(G)$?

Is G ambiguous?

Ex. $E \rightarrow E + E \mid ExE \mid (E) \mid a$

Is G ambiguous?

Ex. $S \rightarrow$ if E then S $|$ if E then S else S $|$ other
where Σ is $\{\text{if, then, else, other}\}$

Is G ambiguous?
Disambiguation of CFG

$E \rightarrow E + E \mid E \times E \mid (E) \mid a$

Problem: Precedence of $+, \times$?

Rewrite:

$E \rightarrow E + T \mid T$
$T \rightarrow T \times F \mid F$
$F \rightarrow (E) \mid a$

1 new variable for each level of precedence

Expression is a list of terms (T) separated by $+$
Term is a list of factors (F) separated by \times

Ex. $S \rightarrow$ if E then S | if E then S else S | other
where Σ is { if, then, else, other}

Want to match else to closest previous unmatched else (C)
Add 2 new variables, MS (matched) and US (unmatched)

$S \rightarrow MS \mid US$
$MS \rightarrow$ if E then MS else MS
$US \rightarrow$ if E then S | if E then MS else US

Ex. $S \rightarrow (S) \mid SS \mid \varepsilon$

What is the problem?

Ex. $B \rightarrow B$ and $B \mid a \mid b$

Problem: How associate—to left or right?
Make right associative:
Designing CFG's

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex.</td>
<td>{ 0^n 1^n</td>
</tr>
<tr>
<td>Ex.</td>
<td>{ 0^n 1^n</td>
</tr>
<tr>
<td>Ex.</td>
<td>{ w w'^r</td>
</tr>
</tbody>
</table>