Nondeterministic Finite Automata

Nondeterminism allows several possible next states (no one state is determined)

<table>
<thead>
<tr>
<th>Deterministic</th>
<th>S.D.</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computation

NFA vs. DFA

NFA are seemingly more powerful (NOT!)

NFA allow choice of next state

When choice, NFA may be more compact

Handling ε

If in q_1 reading input symbol a, and take ε edge, still reading a, but in state q_2.

All ε edges must be included in execution tree.

Qu: Is every DFA an NFA?
Example NFA

![Example NFA Diagram]

Execution on baabb

$L(M) =$

More Example NFA's

![More Example NFA Diagram]
Formal Definition of Nondeterministic FA

A NFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where,
1. Q is a finite set of states
2. Σ is a finite set called the alphabet
3. $\delta : Q \times \Sigma \rightarrow P(Q)$ (power set of Q, include ϵ)
4. $q_0 \in Q$, the start state
5. $F \subseteq Q$, set of accept (final) states

We say that M accepts w if there is a sequence of states $r_0, r_1, ... r_m$ in Q and $w = y_1 y_2 ... y_m$, $y_i \in \Sigma \in \epsilon$ such that
1. $r_0 = q_0$
2. r_{i+1} element of $\delta(r_i, y_{i+1})$
3. r_m is in F

Equivalence of NFA and DFA

Def: Two NFA M_1, M_2 are equivalent if $L(M_1) = L(M_2)$.

Th.: For each NFA, there is an equivalent DFA.

Proof idea:
Start with NFA N. Want DFA M with $L(N) = L(M)$.
We will simulate NFA with DFA.
NFA has set of possible next states; DFA just has 1.
Solution: state of the DFA will be subset of states of NFA

Proof: Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA.

Case 1: N has no ϵ transitions.

$M = (Q', \Sigma, \delta', q_0', F')$
1. $Q' = P(Q)$
2. $\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$
3. $q_0' = \{q_0\}$
4. $F' = \{R \in Q' | R \cap F = \emptyset\}$
Equivalence of NFA and DFA

Case 2: N has ε transitions.

Proof Idea: What needs to change? Have to account for all ε moves after read an input symbol.

Proof: For R a subset of Q, define

$$E(R) = \{ q | q \text{ can be reached from some state in } R \text{ by following only } \varepsilon \text{ edges} \}$$

Change the construction in Case 1 as follows:

1. $\delta'(R, a) = \{ q \in Q | q \in E(\delta(r, a)) \text{ for some } r \in R \}$
2. $q'_0 = \{ E(q_0) \}$

M keeps track of exactly the subset of states N would be in, and accepts when N accepts.

Equivalence of NFA and DFA

Cor.: A language is regular iff some NFA recognizes it.

Example: NFA, construct DFA (Ex. 1.21 p. 57)

Get lots of states....can we do better? States that can’t be reached from start states that have no incoming edges........More later!
The class of regular languages are closed under \(\cup \).

Let \(N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \)
let \(N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) be NFA’s.

Construct NFA \(N \) such that \(L(N) = L(N_1) \cup L(N_2) \)

Proof Idea:

Proof: We define NFA \(N \) as follows....

Regular languages are closed under Union

\[
N = (Q, \Sigma, \delta, q_0, F)
\]

1. \(Q = \{q_0\} \cup Q_1 \cup Q_2 \quad (q_0 \text{ new, } Q_1 \text{ and } Q_2 \text{ disjoint}) \)

2. \(q_0 \) is start

3. \(F = F_1 \cup F_2 \)

4. \[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & \text{if } q \text{ in } Q_1 \\
\delta_2(q, a) & \text{if } q \text{ in } Q_2 \\
\{q_1, q_2\} & \text{if } q = q_0 \text{ and } a = \varepsilon \\
\phi & \text{if } q = q_0 \text{ and } a = \varepsilon
\end{cases}
\]
Regular languages are closed under Star

Proof: Define $N = (Q, \Sigma, \delta, q_0, F)$ from N_1.
1. $Q = \{q_0\} \cup Q_1$ $\ \ \ \text{q0 is new}$
2. q_0 is start
3. $F = \{q_0\} \cup F_1$
4. $\delta(q, a) = \begin{cases}
\delta_1(q, a) & \text{if } q \text{ in } Q_1, q \not \text{ in } F_1 \\
\delta_1(q, a) & \text{if } q \in F_1, a \not = \varepsilon \\
\delta_1(q, a) \cup \{q_1\} & \text{if } q \in F_1 \text{ and } a = \varepsilon \\
\{q_1\} & \text{if } q = q_0, a = \varepsilon \\
\phi & \text{if } q = q_0, a \not = \varepsilon
\end{cases}$

Regular languages are closed under Concatenation

Proof Idea: Start out in N_1, and in any final state of N_1, can switch to N_2; accept if wind up in final state in N_2.

Proof: Define $N = (Q, \Sigma, \delta, q_1, F)$ from N_1 and N_2.
1. $Q = Q_1 \cup Q_2$
2. q_1 is start (same as start of N_1)
3. $F = F_2$
4. $\delta(q, a) = \begin{cases}
\delta_1(q, a) & \text{if } q \text{ in } Q_1, q \not \text{ in } F_1 \\
\delta_1(q, a) & \text{if } q \in F_1, a \not = \varepsilon \\
\delta_1(q, a) \cup \{q_2\} & \text{if } q \in F_1 \text{ and } a = \varepsilon \\
\delta_2(q, a) & \text{if } q \in Q_2
\end{cases}$