Other Undecidable Problems

*Strategy for more problems:
1. Assume for purpose of contradiction that problem \(\text{P decid} \).
2. Show that if \(\text{P} \) were decidable, another problem \(\text{Q} \) (that we have shown undecidable) would be decidable. \(\text{CONTR}. \)

Th. \(E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is empty} \} \) is undecidable.

Proof idea: We show if \(E_{TM} \) were decidable, then \(A_{TM} \) would be.

So suppose \(E_{TM} \) decided by \(R \). We want decider \(S \) for \(A_{TM} \).

Could we use \(R \) directly for \(S \)? \(R \) accepts \(\langle M \rangle \) iff \(L(M) = \phi \).

So if \(L(M) = \phi \), then \(S \) should reject \(w \).

But if \(L(M) \neq \phi \), then we’re stuck!???

Other Undecidable Problems

Trick: Instead of running \(R \) on \(\langle M \rangle \), we run it on a different machine \(\langle S^{M,w} \rangle \) (defined for specific \(M \) and \(w \)).

\(S^{M,w} \) takes input \(x \), and:

1. if \(x \neq w \), it rejects.
2. if \(x = w \), run \(M \) on input \(w \), and accept if \(M \) does.

\(S^{M,w} \) accepts at most one input, \(w \); and it accepts \(w \) iff \(M \) accepts \(w \).

so \(L(S^{M,w}) = \phi \) iff \(M \) rejects \(w \)

so \(L(S^{M,w}) \neq \phi \) iff \(M \) accepts \(w \)

This allows us to use problem \(E_{TM} \)!
E\textsubscript{TM} is Undecidable

Proof: Suppose \(E_{\text{TM}} \) were decidable by \(R \). We show that \(A_{\text{TM}} \) would be decidable, a contradiction.

We first define \(S_{M,w} \) for given \(M \) and \(w \) as:

On input \(x \)
1. if \(x \neq w \), reject.
2. if \(x = w \), run \(M \) on \(w \) and accept if \(M \) does.

We now define decider \(S \) for \(A_{\text{TM}} \) as follows:

On input \(<M,w> \)
1. use \(M \) to construct \(S_{M,w} \)
2. Run \(R \) on \(<S_{M,w}> \)
3. If \(R \) accepts, \(S \) rejects; if \(R \) rejects, \(S \) accepts.

Other Undecidable Problems

We can use other problems than \(A_{\text{TM}} \) to get a contradiction!

Th. \(\text{EQ}_{\text{TM}} = \{<M1,M2> | M \text{ is a TM, } L(M1) = L(M2)\} \) is undecidable.

Proof: We show if \(\text{EQ}_{\text{TM}} \) is decidable, \(E_{\text{TM}} \) is, Contr.

Proof idea: \(\text{EQ}_{\text{TM}} \) tests if 2 languages \(= \), \(E_{\text{TM}} \) if language \(= \) \(\phi \)

So \(E_{\text{TM}} \) is a special case of \(\text{EQ}_{\text{TM}} \).

Proof: Suppose \(R \) decides \(\text{EQ}_{\text{TM}} \). Construct \(S \) to decide \(E_{\text{TM}} \) as follows.

\(S \): on input \(<M> \)
1. Run \(R \) on \(<M, \text{Rej}> \), where \(\text{Rej} \) is \(\text{TM} \) with \(L(\text{Rej}) = \phi \)
2. If \(R \) accepts, \(S \) accepts; if \(R \) rejects, \(S \) rejects. CONTR. !
Mapping Reducibility

Intuition: to solve a problem, reduce it to another

Ex. to solve problem of getting A in course, reduce to getting A on quizzes, on homework, and on final.

We've already used this idea to prove more problems undecidable

Ex: If HALT_TM is decidable, then A_{TM} is decidable.

But A_{TM} already shown undecidable, CONTR.

Mapping reducibility makes reduction of problems precise

$A \leq_m B$: intuitively, if B has a solution, can use to solve for A.

We will use computable mapping m of A to B

Computable Functions

TM as computer of output, not recognizer

Output is what is on tape when halt

Def.: $f : \Sigma^* \rightarrow \Sigma^*$ is a computable function if there is some TM M which computes f:
on input w, M halts with just $f(w)$ on its tape.

Note: M must always halt!

Ex. HW 3 problem 6: TM that, with i and j on tape, computes i^j (if on just 1 tape, and erased i and j, then this TM would compute * function)

Other computable functions: factorial(<n>)

$\text{gcd}(<m,n>)$ prime(<n>) = <nth prime no>

Transformers of TM:

$f(<M>) = <M'>$ where $L(M) = L(M')$, and M' never moves its tape off the left end
Mapping Reducibility

Def. Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every w in Σ^*,

$$w \in A \iff f(w) \in B$$

f is called a reduction.

Can test membership in A by membership in B.

Ex. $E_{TM} \leq_m EQ_{TM}$

$f: \Sigma^* \rightarrow \Sigma^*$

$$<M> \mapsto f(<M>) = <M,\text{Rej}> \quad (\text{where } L(\text{Rej}) = \phi)$$

f appends to $<M>$ the repr. $<\text{Rej}>$; $f(w) = w$ ow.

$$<M> \in E_{TM} \iff f(<M>) \in EQ_{TM}$$

f is computable:

Uses of Mapping Reducibility

Th: If $A \leq_m B$ and B is decidable, then A is decid.

Proof: Let D be the decider for B, and f the reduc. $A \leq_m B$. We define decider D' for A as follows:

D': on input w

1. compute $f(w)$
2. Run D on input $f(w)$; if D accepts, D' accepts. if D rejects, D' rejects.

Since $w \in A \iff f(w) \in B$ by def. map. reduc., and D' accepts $w \iff D$ accepts $f(w)$, we conclude D' accepts A.

Since D is a decider, D' is a decider.

Therefore, A is decidable.
Uses of Mapping Reducibility

Cor: If $A \leq^m_m B$ and A is undecidable, then B is undecidable.

Proof: Suppose B were decidable. By the prev. Th., since $A \leq^m_m B$, then A would be decidable. Contradiction.

Ex. If $A_{TM} \leq^m_m HALT_{TM}$ and A_{TM} undecidable

\longrightarrow HALT_{TM} undecidable

To show $A_{TM} \leq^m_m HALT_{TM}$, need computable $f : <M,w> \longrightarrow <M',w'>$

$<M,w>$ in A_{TM} iff $<M',w'>$ in $HALT_{TM}$

Uses of Mapping Reducibility

TM F computes f as follows:

F: on input $<M,w>$

1. Construct M':

M': on input x

1. Run M on x.

2. If M accepts, M' accepts.

If M rejects, loop infinitely.

2. Output $<M',w>$

Then $<M,w>$ in A \iff M accepts w \iff

TM

M' halts on w \iff

$<M',w>$ in $HALT_{TM}$
Uses of Mapping Reducibility

Th. \(E_{TM} \) is undecidable (revisited)

A \(\leq_m \) reduced to \(E_{TM} \)

Qu: is it a mapping reducibility?

\[<M,w> \longrightarrow <M'> \]

\(M \) accepts \(w \) \(\iff \) \(L(M') = \phi \)

\[<M,w> \text{ in } A \longrightarrow <M'> \text{ in } E_{TM} \]

so we showed \(A_{TM} \leq E_{TM} \)

not \(A_{TM} \leq m E_{TM} \) (can't be done)

We could still prove the th., because

\(E_{TM} \) decidable \(\iff \) \(E_{TM} \) decidable

Turing-Recognizability & Mapping Reducibility

Th. If \(A \leq_m B \) and \(B \) Turing-recognizable, then \(A \) is Turing-recognizable.

Proof: Suppose \(B \) is recognized by TM \(R \), and

\(f: A \rightarrow B \) is a reduction. We define recognizer TM \(M \) for \(A \) as follows:

\[M: \text{ on input } w \]

1. compute \(f(w) \)
2. run \(R \) on input \(f(w) \); if \(R \) accepts, \(M \) acc. if \(R \) rejects, \(M \) rejects.

Since \(w \) in \(A \leftrightarrow f(w) \) in \(B \), by def. map. reduc., and \(M \) accepts \(w \leftrightarrow R \) accepts \(f(w) \)

we conclude \(M \) accepts \(A \). \(M \) is certainly a recognizer. Therefore, \(A \) is Turing-recognizable.