Multiple tapes

\[\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k \]

Lemma: If \(L \) is accepted by a multitape TM, then \(L \) is accepted by a single tape TM.

Proof idea: Use tracks, with special markers for each tape head.

\[
\begin{array}{c|c|c}
w & x & y \\
\hline
\hat{a} & b \\
\hline
m & n & \omega
\end{array}
\]

\(M' \) will simulate \(M \) by making multiple passes over tape, 1 for each track. First, it needs to determine all the symbols being read, in order to determine the next move. So \(k \) symbols must be stored in state. Then, once the next move is determined, it must update each track with new symbol and new tape head position.

Nondeterministic TM's

\[\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L,R\}) \]

Lemma: If \(L \) is accepted by a nondet. TM \(N \), then \(L \) is accepted by some deterministic TM \(D \).

Proof idea: \(D \) will simulate \(N \) by trying all possible branches of \(N \)'s computation on input \(w \). If \(D \) finds an accept state on some branch, it accepts. Otherwise, \(D \) does not accept.

QU: How should \(D \) search the computation tree??

Answer: How represent a branch?

```
  \[ \text{Input} \rightarrow \text{Simulate} \rightarrow \text{Branch Choice} \]
```
Robustness of TM's

Is this surprising??

TM's --> "Idealized" programming languages

Programming languages, if sufficiently general, can do the same computations

Ex. C, Lisp, Java

TM's make formal our informal notion of algorithm

Church-Turing Thesis: The Turing machine model (and any reasonable variant of it) embodies our informal notion of algorithm.

Can't be proved!

From now on, TM --> Algorithms

Decidable Problems

Represent problem using language

Problem: Is w accepted by DFA B?

\[A_{DFA} = \{ <B, w> \mid B \text{ is a DFA that accepts } w \} \]

<> denotes encoding as string

Language decidable --> Problem decidable

Th. \[A_{DFA} \] is a decidable language.

Proof idea: Decider M will simulate D on input w.

If D would accept w, then M accepts; D rejects, M rejects.
Decidable Problems

\[
A_{\text{NFA}} = \{\langle B, w \rangle \mid B \text{ is an NFA, } B \text{ accepts } w\}
\]

Th. \(A_{\text{NFA}}\) is decidable.

Proof idea: Define \(N\) to use \(TM\ M\) (last \(th\) as subroutine.

1. Convert NFA \(B\) to DFA \(D\).
2. Run \(TM\ M\) on input \(\langle D, w \rangle\)
3. If \(M\) accepts, then \(N\) accepts; \(M\) rejects, \(N\) rejects.

\[q_0 q_1 q_2 q_3 \# 01 \# 01 X Y \# \langle \text{nd. table} \rangle \# \ldots \]
\[\{q_0\} \{q_0, q_1\} \ldots \# \ldots \# \langle \text{det. table} \rangle \#\]

Decidable Problems

\[
E_{\text{DFA}} = \{\langle B \rangle \mid B \text{ is a DFA, } L(B) \text{ is nonempty}\}
\]

Th. \(E_{\text{DFA}}\) is decidable.

Lemma: For DFA \(B\), \(L(B)\) is nonempty iff

\(B\) accepts a string of length at most \(|Q|\).

Trivial.

Suppose \(B\) accepts some word. Let \(w\) be a shortest word accepted by \(B\).

If \(|w| < |Q|\), then we are done. So suppose \(|w| > |Q|\). Consider the sequence of states of \(B\) on \(w\).
Decidable Problems

<table>
<thead>
<tr>
<th>DECIDABLE PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w = w_1 w_2 w_3 \ldots w_m$, $m ></td>
</tr>
<tr>
<td>$q_0 \rightarrow q_1 \leftarrow q_2 \ldots \leftarrow q_m$</td>
</tr>
</tbody>
</table>

Since there are more than $|Q|$ states in this sequence, there must be a repetition of states, by the pigeonhole principle. But then we can take a snippet z out of w, and get a shorter string that is accepted by B.

Contradiction. Therefore w is of length $< |Q|$.

Back to Theorem:

*Decider D will, on input $$, simulate B on inputs of length 0 to $|Q|$. If B accepts any string of that length, D accepts. If no such string is found, D rejects. By the Lemma, D accepts E_{DFA}.***

Decidable Problems

<table>
<thead>
<tr>
<th>DECIDABLE PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$EQ_{DFA} = {<A,B> \mid A,B \text{ are DFA, and } L(A) = L(B) }$</td>
</tr>
</tbody>
</table>

Th: EQ_{DFA} is decidable.

Proof: We construct a DFA C with

$L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$

$(\text{symmetric difference})$

$L(A)$

$L(B)$

C can be constructed by TM M using algorithms we developed for closure under \cup, \cap, $\overline{}$. Since $L(C)$ is empty iff. $L(A) = L(B)$, we can use previous theorem for deciding $L(C)$ nonempty.
Decidability Problems for CFG’s

\[A_{\text{CFG}} = \{ <G, w> \mid G \text{ is a CFG, } G \text{ generates } w \} \]

Th. \(A_{\text{CFG}} \) is decidable.

Proof idea: TM could start with start var. \(S \) and try all derivations. If \(w \) is not in \(L(G) \), there will be none!

So trying all derivations to see if \(w \) would not yield decider.

To define a decider, we first put \(G \) in Chomsky normal form.

Then we can bound the number of steps in a derivation TM needs to try to \(2|w|+1 \). QUI: WHY?

The decider \(D \) will then list all derivations of length 0 to \(2|w|+1 \). If any derivation generates \(w \), \(D \) accepts; otherwise, reject.

Decidability Problems on CFG’s

\[E_{\text{CFG}} = \{ <G> \mid G \text{ is a CFG, } L(B) \text{ is nonempty} \} \]

Th. \(E_{\text{CFG}} \) is decidable.

Proof idea: Can’t try all strings (won’t be decidable).

Consider any parse tree for a string \(w \).

If parse tree has path of length > \(|V| \),

then there is a repetition of variables along that path, and we can produce a shorter parse tree. We can repeat this process so that there is a parse tree with no path of length > \(|V| \). Therefore, if \(G \) generates any string, it generates a string whose parse tree has no path > \(|V| \).
Decidable Problems on CFG's

Th. E_{CFG} is decidable. *(continued)*

A decider D for this problem will generate a collection C of parse trees on its tape. C will initially contain S. D repeatedly adds to C any tree that can be obtained from one already in C by applying a single rule, such that:

1. the new tree is not in C
2. the new tree does not have any path of length $> |V|$

Since there are only a finite number of trees of fixed length, the TM D will eventually complete C. $L(G)$ is nonempty iff at least one tree in C has only terminals as leaves.

Decidable Problems for CFG's

$E_{\text{CFG}} = \{ <G,H> \mid G,H \text{ are CFG, and } L(G) = L(H) \}$

E_{CFG} decidable??

Can't use same idea we used for DFA's (symmetric diff.) because CFL’s are NOT closed under complement.

Turns out E_{CFG} is NOT decidable. We can’t prove it yet.

Th. Every CFL is decidable. *(HW 3)*

[Diagram showing relationship between Regular Languages (Reg.), Context-Free Languages (CFL), Decidable (Decid.), and Turing Recognizable (Rec.).]