Turing Machines

Most powerful computational model

(Turing, 1936)

```
finite state control
```

```
tape head
```

```
input
```

```
unlimited tape
```

Operations:
Read symbol, write symbol at head
Move Left (L) or Right (R)

Initial configuration: input starting at left end, with blanks following; tape head at left end

Will let us study the power and limits of computability

Computation on a Turing Machine

Given current state q, current symbol a, new state q', new symbol z, move head L or R

```
finite state control
```

```
tape head
```

```
input
```

```
unlimited tape
```

On input w, M either

1. Enters the accept state q\text{acc} and accepts w, or
2. Enters the reject state q\text{rej} and rejects w, or

 (In these 2 cases, we say M halts on input w)
3. Does neither 1 or 2, in which case it rejects w

 (In case 3, we say M does not halt on input w)
Turing Machine Example

\[
\begin{array}{c}
L = \{ w\#w \mid w \in \{0,1\}^* \} \\
010101\#010101
\end{array}
\]

1. Scan the input to ensure its in \{0,1\}*\#\{0,1\}*
 If not, reject.

2. Zig-zag across tape to corresponding positions
 on either side of \#. If the symbols are the same,
 check them off. If not, reject.

3. When all the symbols to the left of \# are checked
 off, check on the right of \# to make sure there
 are no unchecked symbols. If none, accept.
 If some, then reject.

Formal Definition of TM

A \(TM \) \(M \) is a 7-tuple \((Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)\)

1. \(Q \) is a finite set of states
2. \(\Sigma \) is the input alphabet, not containing \(\square \)
3. \(\Gamma \) is the tape alphabet, with \(\Sigma \subseteq \Gamma \cup \{\square\} \)
4. \(\delta : Q \times \Gamma \to Q \times \Gamma \times \{L,R\} \)
5. \(q_0 \) in \(Q \), the start state
6. \(q_a \) in \(Q \), accept state
7. \(q_r \) in \(Q \), reject state \(q_r \not\equiv q_a \)

Qu: Deterministic or Nondeterministic?
Configurations of TM M

A *configuration* is a string uqv where

- q is a state in Q
- uv is the current (nonblank) tape contents
- M’s head is reading the first symbol of v

The *start configuration* is q_0w (on input w)

If M ever tries to move off the left end of tape, the head stays in the same place:

$$qcv \rightarrow qbv \quad (Even \; though \; move \; is \; to \; L)$$

An *accepting configuration* is one with q_a

A *rejecting configuration* is one with q_r

(Head can be anywhere)

A *halting configuration* is an accepting or rejecting configuration.

Acceptance of TM M

A TM M accepts input w if there is a sequence of configurations C_1, \ldots, C_k with

1. C_1 the start configuration
2. C_i yields C_{i+1} by following δ one step
3. C_k is accepting

$L(M) = \{w \mid M \text{ accepts } w\}$

A is *Turing-recognizable* if $A = L(M)$ for some TM M.

If M always halts, it is a *decider*.

A is *Turing-decidable* if $A = L(M)$ for some decider TM M.

(We say M decides A)
Example TM

\[L = \{ 0^n1^n \mid n \geq 1 \} \]

\[Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\} \]

\[\Sigma = \{0,1\} \quad \Gamma = \{0,1, X, Y, \square\} \]

q0 \hspace{1em} \text{start} \hspace{1em} q5 \hspace{1em} \text{accept} \hspace{1em} q6 \hspace{1em} \text{reject}

\[\delta \] given by

Example TM

Configurations on input 0011

010
Example TM

\[L = \{ a^i b^j c^k \mid i, j \geq 1 \} \]

Describe TM for L:
1. Scan the input to make sure its in \(a^*b^*c^*\). Reject if not.
2. Zig-zag between a’s and c’s. Replace each leftmost a with an X, and then the leftmost c with a Z. Do this until run out of a’s. If run out of c’s, reject.
3. Zig-zag between b’s and c’s. Replace each leftmost b with a Y, and then the leftmost c with a Z. Do this until run out of b’s. If run out of c’s, reject.
4. When run out of b’s, move right; if any c’s left, then reject; otherwise, accept.

Example TM

\[L = \{ 0^n 1^n 2^n \mid n > 1 \} \]
\[\Sigma = \{0, 1, 2\} \quad \Gamma = \{0, 1, 2, X, Y, Z, \square\} \]

Note: can’t accept with any PDA!
1. Storage in states
 Old states \(Q \) New states \(Q \times I_1 \times \ldots \times I_k \)

Ex. \(L \) given by \(ab^* \cup ba^* \)

Construct TM \(M \) that stores first symbol, then makes sure not in rest of input.

\[Q = \{q_0,q_1,q_2\} \times \{a,b,\square\} \]

TM Construction

Multiple tracks on single tape

Each symbol is a \(k \)-tuple (here, \(k = 3 \))

Ex. Construct \(M \) to accept if input is a binary representation of a prime number \(n \)
\((n \) is prime if has no other factors except \(n \) and 1 that divide it evenly\)

Procedure: Check to see if 2, 3, ..., \(n-1 \) divide \(n \);
if any do, reject. if none, accept.

How use tracks?
Multiple tracks on single tape

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On track 2, cycle through numbers \(m \), starting with 2 and ending with \(n-1 \). For each such \(m \), use track 3 to see if \(n \) is divisible by \(m \): start by copying track 1 to track 3. Then repeatedly subtract \(m \) on track 2 from track 3, until you get a remainder on track 3 which is less than \(m \). If remainder = 0, then \(m \) divides \(n \), and so \(M \) rejects. If remainder is not 0, add 1 to \(m \) to obtain the new \(m \), and continue, till get to \(n \).

How do subtraction? test if one number less than another?