Pushdown Automata

NFA with single, last-in-first-out push down stack
unlimited memory

input from alphabet Σ

from stack alphabet Γ

Stack operations:
- Read top
- Remove top (Pop)
- Write top (Push)

$a, x \to y$
Reading input a with x on top, replace x with y
$(a, x = \varepsilon)$

PDA $\leftarrow\rightarrow$ CFG

Example PDA

PDA to recognize $\{0^n1^n | n \geq 0\}$
(non-regular)

$\Sigma = \{0, 1\}$

$\Gamma = \{0, \$\}$

Push $\$ on stack.

Start reading input. As read 0's, push them on stack.
When reach 1, for each 1, pop a 0 off stack. If no 0 to pop, reject.
If reach another 0, after you've read a 1, reject.
Accept if finish input, and stack has $\$ on top.
Finish by popping $\$ off stack.
(Deterministic)
Formal Definition of PDA

A PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where,

1. Q is a finite set of states
2. Σ is the input alphabet
3. Γ is the stack alphabet
4. $\delta: Q \times \Sigma \times \Gamma \rightarrow P(Q \times \Gamma)$
5. q_0 in Q, the start state
6. $F \subseteq Q$, set of accept (final) states

Ex. $Q = \{q_1, q_2, q_3, q_4\}$ $\Sigma = \{0, 1\}$ $\Gamma = \{\varepsilon\}$ $F = \{q_1, q_4\}$

<table>
<thead>
<tr>
<th>input</th>
<th>0</th>
<th>1</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack</td>
<td>ε</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>q_1</td>
<td>$q_2, 0$</td>
<td>q_3, ε</td>
<td>q_4, ε</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2, ε</td>
<td>q_3, ε</td>
<td>q_4, ε</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3, ε</td>
<td>q_4, ε</td>
<td>q_4, ε</td>
</tr>
</tbody>
</table>

State Diagram of PDA

to recognize $\{0^n1^n | n \geq 0\}$

- q_1: input a, top stack b, replace top stack c
 - $a = \varepsilon$ means don’t read input symbol
 - $b = \varepsilon$ means don’t read or pop top of stack
 - $c = \varepsilon$ means don’t write on top
Formal Definition of PDA Acceptance

A PDA M accepts $w = w_1 \ldots w_m$ in Σ^* if there is a sequence of states r_0, r_1, \ldots, r_m in Q and strings $s_0 s_1 s_2 \ldots s_m$ in Γ^* with:

1. $r_0 = q_0$, $s_0 = \varepsilon$ (starts properly)
2. (r_{i+1}, b) is an element of $\delta(r_i, w_{i+1}, \alpha)$ with $s_i = \alpha t$ and $s_{i+1} = bt$, with α, b in $\Gamma \setminus \{\varepsilon\}$, t in Γ^* (moves properly)
3. r_m is in F (ends in final state)

Note: Don’t require stack to be empty to accept.

Example PDA

$L = \{ w w^R | w \in \{a,b\}^* \}$

$L = \{ w | w \text{ has the same number of 0’s and 1’s} \}$
Example PDA

\[L = \{ a^i b^j c^k \mid i, j, k \geq 0 \text{ and } i = j \text{ or } i = k \} \]

Non-deterministically check that \(\# a's = \# b's \) OR
\(\# a's = \# c's \)

Pumping Lemma for CFL's

If \(A \) is a context-free language, then there is a no. \(p \) (pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), \(s \) may be divided into 5 pieces \(u, v, x, y, z \), \(s = uvxyz \), such that all of the following hold:

1. for each \(i \geq 0 \), \(uv^ixyz \) is in \(A \)
2. \(|vy| > 0 \)
3. \(|vxy| \leq p \)

Condition 1 lets us "pump out" elements in \(A \)

Note that either \(v \) or \(y \) can be \(\epsilon \), but both cannot be (by 2)
(Without 2, the lemma is trivially true, with \(v = y = \epsilon \))

Condition 3 assures us we can make \(vxy \) small, if needed.
Pumping Lemma Example

L = \{ a^n b^n c^n \mid n \geq 0 \} is not context-free.

Suppose L were CF. Then let p be the pumping length given by the pumping lemma.
Let s = a^p b^p c^p in L.

Note that |s| > p, so s = uvxyz as in the lemma.

Case 1: v and y contain only 1 type of symbol.
(E.g., v contains only a’s, and y only b’s)
Since there are 3 symbols in the alphabet of L,
there is a third type of symbol not in v or y.
Consider uvvxyyz. It contains more of the first
two symbols than the third; contradiction.

Pumping Lemma Example, Continued

Case 2: Either v or y contains at least 2 symbols.
(E.g., v contains a’s and b’s)
Consider uvvxyyz. It contains symbols out of
order in the part that repeats and contains at
least 2 symbols. Contradiction.
These are the only cases. End of proof.

Ex. v = ab. Then uababxyyz has substring abab, which
is not allowed.
Pumping Lemma Example

L = \{ww \mid w \in \{0,1\}^*\} is not context-free.

Suppose L were CF. Then let p be the pumping length given by the pumping lemma.
Let s = 0^p10^p1^p in L.

Note that |s| > p, so s = uvxyz as in the lemma.

Case 1: vxy is in the first half of the string
Then uvvxyz will have the second half
of the string start with a 1; but the first half starts
with 0. So it cannot be of form ww. Contradiction.

Case 2: vxy is in the second half.
Follows similarly to case 1.

Pumping Lemma Example, continued

Case 3: vxy is in the middle of the string.
Then uxz is of the form \(0^i10^j1\), where
i and j are not both p. This string is not
of form ww. Contradiction.

Qu: What about uvvxyz?

Could we have used \(0^p10^p1\) for s in the proof?