CSE 291D/234
Data Systems for Machine Learning

Arun Kumar

Topic 3: Feature Engineering and Model Selection Systems

DL book; Chapters 8.2 and 8.3 of MLSys book
Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.
Recap: Bias-Variance-Noise. Decomposition

- The Model Selection Triple
 - Feature Engineering
 - Hyperparameter Tuning
 - Algorithm/Architecture Selection

- Model Selection Systems
 - Feature Engineering Systems

- Advanced Model Selection Systems Issues
Bias-Variance-Noise Decomposition

\[\text{ML (Test) Error} = \text{Bias} + \text{Variance} + \text{Bayes Noise} \]

Complexity of model/hypothesis space

Discriminability of examples

\[x = (a,b,c); y = +1 \]

\[x = (a,b,c); y = -1 \]
Hypothesis Space of Functions

❖ A trained ML model is a parametric prediction function:

$$f : \mathcal{D}_W \times \mathcal{D}_X \rightarrow \mathcal{D}_Y$$

❖ **Hypothesis Space:** The set \mathcal{H} of all possible functions f that can be represented by a model

❖ **Training:** Picks one f from hypo. space; needs *estimation* procedure (e.g. optimization, greedy, etc.)

❖ Factors that determine hypo. space:
 ❖ Feature representation
 ❖ Inductive bias of model
 ❖ Regularization
Another View of Bias-Variance

- Bias arise because hypo. space does not hold “truth”
 - Shrinking hypo. space raises bias
- Variance arises due to finite training sample
 - Estimation approximately nears truth
 - Shrinking hypo. space lowers variance
3 Ways to Control Learning/Accuracy

❖ Reduce Bayes Noise:
 ❖ Augment with *new useful* features from appl.

❖ Reduce Bias:
 ❖ Enhance hypo. space: derive different features; more complex model
 ❖ Reduce shrinkage (less regularization)

❖ Reduce Variance:
 ❖ Shrink hypo. space: derive different features; drop features; less complex model
 ❖ Enhance shrinkage (more regularization)
The Double Descent Phenomenon

- DL and some other ML families can get arbitrarily complex
 - Can “memorize” entire training set
 - Curiously, variance can drop after rising; bias goes to 0!
 - “Interpolation regime” is open question in ML theory

Outline

❖ Recap: Bias-Variance-Noise. Decomposition
❖ The Model Selection Triple
 ❖ Feature Engineering
 ❖ Hyperparameter Tuning
 ❖ Algorithm/Architecture Selection
❖ Model Selection Systems
 ❖ Feature Engineering Systems
❖ Advanced Model Selection Systems Issues
Recall 3 ways to control ML accuracy: reduce bias, reduce variance, reduce Bayes noise

Alas, the exact raises/drops in errors on given training task and sample are not predictable

Need empirical comparisons of configurations on data

Train-validation-test splits; cross-validation procedures
The data scientist/AutoML procedure must steer 3 key activities to alter the Model Selection Triple (MST):

1. **Feature Engineering (FE):** What is/are the domain(s) of the hypo. space(s) to consider?

2. **Algorithm/Architecture Selection (AS):** What exact hypo. space to use (model type/ANN architecture)?

3. **Hyper-parameter Tuning (HT):** How to configure hypo. space shrinkage and estimation procedure approx.?
The Model Selection Triple

- The data scientist/AutoML procedure must steer 3 key activities to explore the Model Selection Triple (MST)

- Stopping criterion is application-specific / user-specific on Pareto surface: time, cost, accuracy, tiredness (!), etc.

Outline

❖ Recap: Bias-Variance-Noise. Decomposition
❖ The Model Selection Triple
❖ Feature Engineering
❖ Hyperparameter Tuning
❖ Algorithm/Architecture Selection
❖ Model Selection Systems
❖ Feature Engineering Systems
❖ Advanced Model Selection Systems Issues
Feature Engineering

- Process of converting prepared data into a *feature vector representation* for ML training/inference
 - Aka feature extraction, representation extraction, etc.
- Activities vary based on data type:
 - Join and Group Bys
 - Feature interactions
 - Feature selection
 - Temporal feature extraction
 - Value recoding
 - Dimensionality reduction
Feature Engineering

❖ Process of converting prepared data into a *feature vector representation* for ML training/inference
 ❖ Aka feature extraction, representation extraction, etc.
❖ Activities vary based on data type:

- Bag of words
- N-grams
- Parsing-based features
- Signal processing-based features
- Deep learning
- Transfer learning
Outline

❖ Recap: Bias-Variance-Noise. Decomposition
❖ The Model Selection Triple
 ❖ Feature Engineering
 ❖ Hyperparameter Tuning
 ❖ Algorithm/Architecture Selection
❖ Model Selection Systems
 ❖ Feature Engineering Systems
❖ Advanced Model Selection Systems Issues
Hyperparameter Tuning

- Most ML models have hyper-parameter knobs
 - Learning rate
 - Regularization
 - Dropout prob.
 - Complexity
 - Number of trees
 - Max height/min split
 - Learning rate?

- Most of them raise bias slightly but reduce variance more
- No hyp.par. settings universally best for all tasks/data
Hyperparameter Tuning

- Common methods to tune hyp.par. configs:
 - Grid search
 - "Random" search

Hyperband

❖ An automated ML (AutoML) procedure for tuning hyp.par.

❖ **Basic Idea:** For iterative procedures (e.g., SGD), stop non-promising hyp.par. configs at earlier epochs
 ❖ Based on multi-armed bandit idea from gambling/RL

❖ **Benefits:**
 ❖ Reapportioning resources with *early stopping* may help reach better overall accuracy sooner
 ❖ Total resource use may be lower vs grid/random search

❖ 2 knobs as input:
 ❖ R: Max budget per config (e.g., # SGD epochs)
 ❖ \eta: Stop rate for configs

Hyperband

Algorithm 1: Hyperband algorithm for hyperparameter optimization.

```plaintext
input : $R$, $\eta$ (default $\eta = 3$)
initialization: $s_{\text{max}} = \lfloor \log_\eta(R) \rfloor$, $B = (s_{\text{max}} + 1)R$

```

for $s \in \{s_{\text{max}}, s_{\text{max}}-1, \ldots, 0\}$ do

1. $n = \left\lfloor \frac{B}{R^{(s+1)}} \right\rfloor$, $r = R\eta^{-s}$

 // begin SUCCESSIVE_HALVING with (n,r) inner loop

2. $T = \text{get_hyperparameter_configuration}(n)$

for $i \in \{0, \ldots, s\}$ do

3. $n_i = \lfloor n\eta^{-i} \rfloor$

4. $r_i = r\eta^i$

5. $L = \{\text{run then return val loss}(t, r_i) : t \in T\}$

6. $T = \text{top_k}(T, L, \lfloor n_i/\eta \rfloor)$

end

end

return Configuration with the smallest intermediate loss seen so far.

Brackets: independent trials

Akin to random search

Survival of the fittest!
Hyperband

<table>
<thead>
<tr>
<th>i</th>
<th>n_i</th>
<th>r_i</th>
<th>n_i</th>
<th>r_i</th>
<th>n_i</th>
<th>r_i</th>
<th>n_i</th>
<th>r_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>81</td>
<td>1</td>
<td>27</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>27</td>
<td>2</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>27</td>
<td>1</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>27</td>
<td>1</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R = 81; \ \eta = 3$

n_i: # hyp.par.configs run
r_i: # epochs per config

Still not as popular as grid/random search; latter is simpler and easier to use (e.g., how to set R and η?)

Review Zoom Poll
Outline

- Recap: Bias-Variance-Noise. Decomposition
- The Model Selection Triple
 - Feature Engineering
 - Hyperparameter Tuning
- Algorithm/Architecture Selection
- Model Selection Systems
 - Feature Engineering Systems
- Advanced Model Selection Systems Issues
Algorithm Selection

❖ **Basic Goal:** AutoML procedure to pick among a set of interchangeable models (hyp.par. tuning included)

❖ Automate a data scientist’s intuition on feature preprocessing, missing values, hyp.par. tuning, etc.

❖ Many heuristics: AutoWeka, AutoSKLearn, DataRobot, etc.

AutoWeka

[Diagram of AutoWeka algorithm]

Algorithm Selection

- AutoScikitLearn uses a more sequential Bayesian optimization approach

NAS and AutoKeras

- DL NCG arch. akin to model family in classical ML
- Some AutoML tools aim to automate NCG design too

Google’ NAS uses RL to construct and evaluate NCGs

AutoKeras uses Bayesian optimization and has optimized impl.

- Not that popular in practice; compute-intensive; hard to debug

Outline

❖ Recap: Bias-Variance-Noise. Decomposition
❖ The Model Selection Triple
 ❖ Feature Engineering
 ❖ Hyperparameter Tuning
 ❖ Algorithm/Architecture Selection
❖ Model Selection Systems
 ❖ Feature Engineering Systems
❖ Advanced Model Selection Systems Issues
Systems Aspects of Model Selection

- ML/data mining folks have studied model selection from an algorithmic automation/accuracy standpoint
- But its **resource efficiency** is a pressing ML systems issue:
 - Long running times; need lots of CPUs/GPUs
 - Cost and energy footprints non-trivial
 - If user is in the loop, latency matters too
- Need to raise **throughput** of exploring training configs with minimal resource expenses
Asynchronous Successive Halving (ASHA)

- Successor to Hyperband that uses resource more fully
- **Issues -> New Ideas:**
 - Top-k evals in Hyperband are sync. point bottleneck when configs are diverse -> *Asynchronous top-k check*; better for diverse configs
 - Fewer and fewer configs towards bracket end (lower deg. of par.) -> *Add new hyp.par. configs* on the fly; keep all workers busy
- ASHA adapts AutoML procedure to cluster setting for massive parallel hyp.par tuning

https://blog.ml.cmu.edu/2018/12/12/massively-parallel-hyperparameter-optimization/
Asynchronous Successive Halving (ASHA)

- 25 workers
 - CIFAR10 Using Small Cuda Convnet Model

- 500 workers
 - LSTM on PTB
 - Total time of weeks!
Introducing Cerebro

Key Observation: False dichotomy of 2 main parallelism paradigms in ML for scalable training / model selection

Task Parallelism

(Dask, Hyperband, ASHA, Vizier, etc.)

- 1 worker per config

Data Parallelism

(RDBMS, Spark, PS, Horovod, etc.)

- 1 config at a time

- High throughput model selection
- Best accuracy from Sequential SGD
 - Low data scalability; wastes space (copy) or network (remote read)

- High data scalability via sharding
 - BSP does not converge; mini-batch level has high communication costs
 - Low throughput overall
Q: Can we get the best of both worlds?
Cerebro’s Model Hopper Parallelism

- A new hybrid of task- and data-parallelism for SGD

Epoch 1.2 starts in parallel

<table>
<thead>
<tr>
<th>Worker 1</th>
<th>Worker 2</th>
<th>Worker 3</th>
<th>Worker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNN 4</td>
<td>DNN 1</td>
<td>DNN 2</td>
<td>DNN 3</td>
</tr>
<tr>
<td>D1</td>
<td>D2</td>
<td>D3</td>
<td>D4</td>
</tr>
</tbody>
</table>
Key Insight: SGD is robust to randomness of data ordering

Properties of Model Hopper Parallelism (MOP):

- All configs visit dataset in some sequential order; ensures similar accuracy as task parallelism
- Scheduler keeps all workers busy on shard; just like data parallelism
- No sync. point within an epoch of training all configs; very little idling of workers due to 1 comm. step per epoch
Communication Cost Analysis of MOP

- p workers; $|S|$ configs; k epochs; b batch size; m model size

Table 2: Communication cost analysis of MOP and other approaches.

*Full replication. †Remote reads.

‡Parameters for the example: $k = 20$, $|S| = 20$, $p = 10$, $m = 1$GB, $\langle D \rangle = 1$TB, and $|D|/b = 100$K.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Comm. Cost</th>
<th>Example‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Hopper Parallelism</td>
<td>$kmp</td>
<td>S</td>
</tr>
<tr>
<td>Task Parallelism (FR*)</td>
<td>$p\langle D \rangle + m</td>
<td>S</td>
</tr>
<tr>
<td>Task Parallelism (RR†)</td>
<td>$k</td>
<td>S</td>
</tr>
<tr>
<td>Bulk Synchronous Parallelism</td>
<td>$2kmp</td>
<td>S</td>
</tr>
<tr>
<td>Centralized Fine-grained</td>
<td>$2kmp</td>
<td>S</td>
</tr>
<tr>
<td>Decentralized Fine-grained</td>
<td>$km(p-1)</td>
<td>S</td>
</tr>
</tbody>
</table>

$2km(p - 1)|S|\left\lceil \frac{|D|}{(bp)} \right\rceil$ 72 PB
Empirical Results

- Cerebro/MOP is near Pareto-optimal on completion time, memory/space efficiency, and network cost

<table>
<thead>
<tr>
<th>System</th>
<th>ImageNet</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Runtime (hrs)</td>
<td>GPU Utili. (%)</td>
</tr>
<tr>
<td>TF PS - Async</td>
<td></td>
<td>19.00</td>
<td>8.6</td>
</tr>
<tr>
<td>Horovod</td>
<td></td>
<td>5.42</td>
<td>92.1</td>
</tr>
<tr>
<td>TF Model Averaging</td>
<td></td>
<td>1.97</td>
<td>72.1</td>
</tr>
<tr>
<td>Celery</td>
<td></td>
<td>1.72</td>
<td>82.4</td>
</tr>
<tr>
<td>Cerebro</td>
<td></td>
<td>1.77</td>
<td>79.8</td>
</tr>
</tbody>
</table>

Figure 10: Reading data from remote storage.
Discussion on Cerebro paper
Vision of Cerebro Platform

High-level Model Building APIs

Transfer Learning
Hyperparameter Tuning

Ablation Analysis
Architecture Search
Feature Transfer

Sequence Analysis
Grouped Learning
Multi-task Batching

Optimization and Scheduling Layer

Execution and Storage Layer

CLIs

Jupyter

GUIS

TensorBoard

mlflow
Determined AI Training Platform

Data Prep
- Data Storage and ETL
- Apache Spark
- AWS S3
- Apache Airflow
- Pachyderm

Model development & training
- TensorFlow
- PyTorch
- Keras
 - Hyperparameter search
 - NAS
 - Visualization and debugging
 - Distributed training
 - Experiment tracking
 - Cluster sharing and resource management

Model Deployment
- Web services and apps
 - TensorFlow Serving
 - Amazon SageMaker Hosting
 - mlflow Models
 - Seldon

Available today
In development

https://determined.ai/
Outline

❖ Recap: Bias-Variance-Noise. Decomposition
❖ The Model Selection Triple
 ❖ Feature Engineering
 ❖ Hyperparameter Tuning
 ❖ Algorithm/Architecture Selection
❖ Model Selection Systems
 ❖ Feature Engineering Systems
❖ Advanced Model Selection Systems Issues
Feature Engineering Systems

- Received less attention than model building systems

Key issues they address:

- **Usability:** Higher level specification of feature eng. ops
- **Efficiency:** Automated systems-level optimization

Challenges:

- Feature eng. is very *heterogeneous*; tough for one tool to capture all ops, data types, etc.
- *Turing-complete code* rampant in feature eng.; tough for automated optimization
Feature Engineering Systems

Sample of feature engineering systems:

- Joins
- Feature interactions
- Feature selection
- Textual / signal proc. features
- Deep transfer learning

Columbus KeystoneML Vista
Feature Selection in Columbus

- **Setting**: Exploratory feature subset selection for GLMs on tabular data in R (or NumPy/Pandas)
- **Goal**: Reduce compute redundancy and data access at scale
- **Approach**: An embedded domain-specific language (DSL) with “logical” ops

Logical Operators

<table>
<thead>
<tr>
<th>Data Transform</th>
<th>Logical Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate</td>
<td>Mean, Variance, Covariance, Pearson Correlations, Cross Validation, AIC</td>
</tr>
<tr>
<td>Regression</td>
<td>Least Squares, Lasso, Logistic Regression</td>
</tr>
<tr>
<td>Explore</td>
<td>Feature Set Operations, Stepwise Addition, Stepwise Deletion, Forward Selection, Backward Selection</td>
</tr>
</tbody>
</table>

Example program in Columbus DSL

```plaintext
1  e  = SetErrorTolerance(0.01)  # Set Error Tolerance
2  d1  = Dataset("USCensus")  # Register the dataset
3  s1  = FeatureSet("NumHouses", ...)  # Population-related features
4  l1  = CorrelationX(s1, d1)  # Get mutual correlations
5  s1  = Remove(s1, "NumHouses")  # Drop the feature “NumHouses"
6  l2  = CV(lsquares_loss, s1, d1, k=5)  # Cross validation (least squares)
7  d2  = Select(d1,"Income >= 10000")  # Focus on high-income areas
8  s2  = FeatureSet("Income", ...)  # Economic features
9  l3  = CV(logit_loss, s2, d2, k=5)  # Cross validation with (logit loss)
10 s3  = Union(s1, s2)  # Use both sets of features
11 s4  = StepAdd(logit_loss, s3, d1)  # Add in one other feature
12 Final(s4)  # Session ends with chosen features
```
Feature Selection in Columbus

- **Optimization techniques:**
 - Some logical ops have alternate physical ops with different runtimes; Columbus picks automatically
 - **Exact:** Batching, Subset materialization, QR decomposition
 - **Approx.:** Coreset sampling, Warm starting

(b) Materialization Strategies and ROPs Used by Each Strategy

<table>
<thead>
<tr>
<th>Materialization Strategies</th>
<th>Materialization ROPs</th>
<th>Execution ROPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lazy</td>
<td>N/A</td>
<td><-, %*, solve</td>
</tr>
<tr>
<td>Eager</td>
<td><-</td>
<td>%*, solve</td>
</tr>
<tr>
<td>Naïve Sampling</td>
<td><-, sample</td>
<td>%*, solve</td>
</tr>
<tr>
<td>Coreset</td>
<td><-, %*, solve, sample, *</td>
<td>%*, solve</td>
</tr>
<tr>
<td>QR</td>
<td><-, qr</td>
<td>backsolve</td>
</tr>
</tbody>
</table>

Graphs

- **Error Tolerance**
- **Sophistication of Task and Reuse**
- **Computation**
Feature Pipelines in KeystoneML

- Similar to Columbus but more general: larger set of classical ML training and feat. eng. ops on top of Spark
- Supports text and signal proc.-based image features

```scala
val textClassifier = Trim andThen LowerCase andThen Tokenizer andThen NGramsFeaturizer(1 to 2) andThen TermFrequency(x => 1) andThen (CommonSparseFeatures(1e5), data) andThen (LinearSolver(), data, labels)
val predictions = textClassifier(testData)
```

- Optimizations: Diff. distributed linear solvers at op level; at full pipeline level: materializing and caching intermediates, sampling, common sub-expression elimination

Feature Transfer in Vista

❖ **Setting**: Pre-trained CNNs are commonly used to extract image feature repr. for multimodal analytics.

❖ **Issue**: No single layer of CNN is universally best for downstream accuracy; need to compare multiple layers.
Feature Transfer in Vista

Pre-trained Deep CNN

But no single CNN layer is always best for accuracy

Structured Data

Brand Tags Price

Downstream ML Model Training
Feature Transfer in Vista

- **Approach**: Vista casts feature transfer as a *multi-query optimization* problem and creates *materialized views*

- **Optimizations**: Staging out layer *materializations* avoids compute redundancy; automated memory management
Tradeoffs of Feature Eng. Systems

❖ Pros:
 ❖ High level ops may help improve ML user productivity
 ❖ Automated resource optimization reduces costs

❖ Cons:
 ❖ Lack of sufficient generality
 ❖ ML user needs to (re)learn new APIs; may be complex
 ❖ Extra dependencies and maintenance issues

❖ Some companies now have in-house custom APIs/tools or general code/notebook orchestration for feat. eng. pipelines (not really optimized). More on “feature stores” in Topic 6.
Outline

❖ Recap: Bias-Variance-Noise. Decomposition
❖ The Model Selection Triple
 ❖ Feature Engineering
 ❖ Hyperparameter Tuning
 ❖ Algorithm/Architecture Selection
❖ Model Selection Systems
 ❖ Feature Engineering Systems
❖ Advanced Model Selection Systems Issues
End-to-End AutoML

- Some tools claim to automate data preparation, feat. eng., and model building holistically.

- Unclear how effective they are; no public benchmarks.

- Unclear if they do any holistic optimizations, e.g., caching common intermediates, logical-physical separation.

- Open questions on systematizing and optimizing end-to-end AutoML.
Cloud-Native Model Selection

- ML resource availability is now flexible and heterogenous
 - Local machine -> on-premise cluster -> cloud

- Cloud-native offers new opportunities/challenges:
 - Elasticity: upscale/downscale compute/RAM as needed
 - Cheap decoupled storage (e.g., S3)
 - Cheap ephemeral compute (e.g., Spot, Serverless)

- Need to redesign model sel. sys. to be cloud-native:
 - Open questions on optimizing resource efficiency vs runtimes vs total cost
More Effective Architecture Selection

❖ Most DL users still hand craft NCG for AS
❖ Analogous to manual feat. eng. in classical ML
❖ NAS / AutoKeras still have only limited adoption

❖ Open questions on bridging usability gap
❖ Need fast human-in-the-loop tools
❖ Domain-specific GUI-based AS tools?

https://www.youtube.com/watch?v=r5aEkpEkDzl&feature=emb_title
Review Questions

- Name 3 model sel. systems/approaches for SGD-based ML discussed in class whose communication complexity is independent of SGD batch size.
- Briefly explain 2 cons of building separate feat. eng. systems.
- Briefly explain one common systems-level optimization seen in many feat. eng. systems.
- Why bother redesigning model sel. systems for the cloud?