CSE 291D/234
Data Systems for Machine Learning

Arun Kumar

Topic 2: Deep Learning Systems

DL book; Chapters 5 and 6 of MLSys book
Academic ML 101

Generalized Linear Models (GLMs); from statistics

Bayesian Networks; inspired by causal reasoning

Decision Tree-based: CART, Random Forest, Gradient-Boosted Trees (GBT), etc.; inspired by symbolic logic

Support Vector Machines (SVMs); inspired by psychology

Artificial Neural Networks (ANNs): Multi-Layer Perceptrons (MLPs), Convolutional NNs (CNNs), Recurrent NNs (RNNs), Transformers, etc.; inspired by brain neuroscience

Deep Learning (DL)
Real-World ML 101

Deep Learning

DL Systems in the Lifecycle

Data Scientist/ML Engineer

Source → Build → Deploy

ML/AI + Data Systems Infrastructure

Data acquisition
Data preparation

Feature Engineering
Training & Inference
Model Selection

Serving
Monitoring
Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.
Evolution of Scalable ML Systems

1980s

- **Scalability**
- **Manageability**

Late 1990s to Mid 2000s

- **ML on Dataflow Systems**
 - Apache Mahout
 - Apache Spark

Mid 2010s—

- **Cloud ML**
 - dmlc XGBoost
 - Amazon SageMaker

Mid 1990s

- **In-RDBMS ML Systems**
 - SAS
 - IBM
 - Microsoft
 - Oracle

Early 2010s

- **Parameter Server**
 - MADlib
 - GraphLab

Late 2000s to Early 2010s

- **Deep Learning Systems**
 - TensorFlow
 - PyTorch

Developability

ML System Abstractions
But what exactly is “deep” about DL?
Outline

❖ Introduction to Deep Learning
❖ Overview of DL Systems
❖ DL Training
 ❖ Compilation and Execution
 ❖ Distributed Training
❖ DL Inference
❖ Advanced DL Systems Issues
Unstructured Data Applications

- Many applications need to process unstructured data: text, images, audio, video, time series, etc.
- **Examples:** Machine translation, radiology, ASR, video surveillance, exercise activity analysis, etc.

- Such data have low level formatting: strings, pixels, temporal shapes, etc.
- Not intuitive what the *features* for prediction should be.
Past Feature Engineering: Vision

- Decades of work on in machine vision on *hand-crafted* featurization based on crude heuristics.

Examples:

- **Histogram of Oriented Gradient (HOG):**
 - Geometric presentation of HOG feature
 - Histogram of intensity orientation in a cell

- **Scale-invariant Feature Transform (SIFT):**
 - Keypoint descriptor
 - Image gradients

- **Fisher Vectors:**
 - Patch detection
 - Feature extraction
 - GMM: Visual dictionary
 - Soft assignment
 - Classification

Fig. 3. Histogram of oriented gradient extraction from face.
Pains of Feature Engineering

- Ad hoc hand-crafted featurization had major cons:
 - *Loss of information* in “summarizing” data
 - *Purely syntactic*, lack “semantics” of objects
- Similar issues with hand-crafted text featurization, e.g., Bag-of-Words, parsing-based approaches, etc.

Q: Is there a way to mitigate above issues with hand-crafted feature extraction from such low-level data?
Learned Feature Engineering

- **Basic Idea:** Instead of hand crafting features, specify some *data type-specific invariants* and *learn feature extractors*

- **Examples:**
 - Images have *spatial dependency*; not all pixel pairs are equal because nearby ones mean “something”
 - Text tokens have local and global dependency in a sentence—not all words can go in all locations
 - DL bakes in such data type-specific invariants to learn directly from (close-to-)raw inputs and produce outputs; aka “end-to-end” learning
 - “Deep”: typically 3 or more layers to transform features
Neural Architecture as Feature Extractors

- Different invariants baked into different DL sub-families
- **Examples:** CNNs

Convolutional Neural Networks (CNNs) use *convolutions* to exploit invariants and learn hierarchy of relevant features from images.
Neural Architecture as Feature Extractors

- Different invariants baked into different deep learning models
- **Examples:** LSTMs

Long Short Term Memory Networks (LSTMs) use **memory cells** to exploit invariants in sequence data processing.
Neural Architecture as Feature Extractors

- Also possible to mix and match learned featurizers in DL!
- **Example:** CNN-LSTMs for time series

CNNs extract temporally relevant features locally, while LSTMs learn more global behavior; whole neural architecture (CNN-LSTM) is trained *end to end*
Neural Architecture as Feature Extractors

- Also possible to mix and match learned featurizers in DL!
- **Example:** CNN-LSTMs for video

CNNs extract visually relevant features at each time step, while LSTMs learn over those features across time; whole neural architecture (CNN-LSTM) is trained *end to end*.
Flexibility of Deep Learning

- **Flexibility** is a superpower of DL methods:
 - Almost any data type/structure as input and/or output
 - Dependencies possible within input/output elements

```
Click Prediction
Image Captioning
Sentiment Prediction
Machine Translation
Video Surveillance
```
Popularity of Deep Learning

- All major Web/tech firms use DL extensively; increasingly common in many enterprises and domain sciences too

Growing Use of Deep Learning at Google

of directories containing model description files

Across many products/areas:
- Android
- Apps
- drug discovery
- Gmail
- Image understanding
- Maps
- Natural language understanding
- Photos
- Robotics research
- Speech
- Translation
- YouTube
- ... many others ...
Pros & Cons of DL (vs Classical ML)

❖ **Pros:**

❖ **Accuracy:** Much higher than hand-crafted featurization on unstructured data

❖ **Flexibility:** Enables *unified* analytics of many data types

❖ **Compact artifacts:** Succinct code, e.g., 5 lines in PyTorch vs 500 of lines of raw Python/Java

❖ **Predictable resource use:** Useful during model serving

❖ **Cons:**

❖ **Neural architecture engineering:** Resembles the pains of feature engineering of yore!

❖ **Large labeled data:** Needed in most cases to not overfit

❖ **High computational cost:** ‘Nuff said!
Outline

❖ Introduction to Deep Learning
❖ Overview of DL Systems
❖ DL Training
 ❖ Compilation and Execution
 ❖ Distributed Training
❖ DL Inference
❖ Advanced DL Systems Issues
Q: What is a Deep Learning (DL) System?

- A software system to specify, compile, and execute deep learning (DL) training and inference workloads on large datasets of any modality

Specify
Neural computational graphs; auto-diff; SGD-based procedures

Compile
Translate model computations (both training and inference) to hardware-specific kernels

Execute
Place data and schedule model computations on hardware
Neural Computational Graphs (NCGs)

- Abstract representation of neural architecture and specification of training procedure

- A dataflow graph where the nodes represent operations in DL system’s API and edges represent tensors

- Tensor typically stored as NumPy object under the covers
TensorFlow (TF) is now widely used in both industry and academic research; PyTorch is second most popular. Most data scientists prefer the Python API. Higher-level APIs are more succinct but more restrictive in terms feature transformations. Under the covers, TF *compiles* deep net specification to C++-based "kernels" to run on various processors.
Model Exchange Formats

- **Basic Goal:** *Portability* of model specification across systems
- These are domain-specific file formats that prescribe how to *(de)serialize* the neural architecture and training options
 - Dataflow graph typically human-readable, e.g., JSON
 - Weight matrices typically stored in binary format

ONNX provides interoperability between frameworks
Even Higher-level APIs

❖ Keras sits on top of APIs of TF, PyTorch; popular in practice
 ❖ TF recently adopted Keras as a first-class API
❖ More restrictive specifications of neural architectures; trades off flexibility/customization for better usability
❖ Better for data scientists than low-level TF or PyTorch APIs, which may be better for DL researchers/engineers
❖ AutoKeras is an AutoML tool that sits on top of Keras to automate neural architecture selection
Outline

❖ Introduction to Deep Learning
❖ Overview of DL Systems
❖ DL Training
 ❖ Compilation and Execution
 ❖ Distributed Training
❖ DL Inference
❖ Advanced DL Systems Issues
Recall that DL training using SGD-based methods:

\[W^{(t+1)} \leftarrow W^{(t)} - \eta \nabla \tilde{L}(W^{(t)}) \]

\[\nabla \tilde{L}(w^{(k)}) = \sum_{(y_i, x_i) \in B \subset D} \nabla l(y_i, f(w^{(k)}, x_i)) \]

Key difference with classical ML: weight updates are not one-shot but involve backpropagation.
Outline

❖ Introduction to Deep Learning
❖ Overview of DL Systems
❖ DL Training
❖ Compilation and Execution
❖ Distributed Training
❖ DL Inference
❖ Advanced DL Systems Issues
Backpropagation Algorithm

- An application of the chain rule from differential calculus
- Layers of neural net = series of function compositions

\[
\frac{d}{dx} [f(g(x))] = f'(g(x))g'(x)
\]

Forward pass

Backprop/Backward pass

https://sebastianraschka.com/faq/docs/visual-backpropagation.html
Symbolic Auto. Differentiation (AutoDiff)

- A key benefit of DL tools: gradients are computed symbolically and automatically
 - No numerical methods/approximations needed
 - Calculus is abstracted away!
- Feasible because API to express arch. and loss function has pre-defined dataflow ops with known properties
 - Code specifies derivatives of each op
- Pioneered in Theano; now adopted in all DL tools
Differentiable Programming

❖ DL tools have heralded this new programming paradigm!
❖ Can construct complex compositions of 1000s of functions using a hierarchy of more abstract APIs
❖ “Model is the new code”!
❖ E.g., tf.math has ~130 functions, tf.nn has ~80 functions, Keras layers ~100 functions!

https://www.tensorflow.org/api_docs/python/tf/all_symbols
https://keras.io/api/
Translating a Neural Comp. Graph

- DL systems must translate DL code with even millions of tensor ops efficiently down to hardware kernels

Deep learning code

Neural computational graph

Intermediate representation (IR)

Optimized IR

Hardware kernels

- Analogous to RDBMS’s SQL translation stack
- IR-based approach enables unified support for a variety of hardware backends, e.g., GPUs, CPUs, FPGAs, TPUs, other ASICs (e.g., on mobiles or IoT)
Hardware Kernels in DL Systems

- DL training is almost always performed on GPUs
 - NVIDIA’s CuDNN on top of base CUDA

- Optimized use of GPU memory/caches and PUs for DL ops, e.g., convolution
 - Much faster than best CPUs

- All popular DL systems support CuDNN backend
 - Some have new CUDA kernels for better control or memory handling
Translating a Neural Comp. Graph

- 2 major variants: static and dynamic
 - Static unrolls the NCG, compiles and optimizes the ops directly to hardware kernels in one go
 - Dynamic takes an interpreted approach; NGG structure itself can change on the fly!
- Static is more amenable to program optimizations and can be more scalable
- Dynamic is more flexible and popular in DL research
- Different DL sub-families have different requirements:
 - CNNs, transformers, RNNs on time series usually static
 - Fancier RNNs on text, graph NNs tend to be dynamic
DL Heterogeneity

❖ Dozens of DL sub-families are used in practice or at least studied!
❖ DL researchers keep designing new kinds of differentiable programs that stretch the capabilities of modern DL systems
❖ Facebook and Google are apparently working on a new PL for DL!

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
Compiler-level Optimizations

- Popular DL systems support compiler optimizations to reduce computations, reduce memory stalls, and/or raise hardware parallelism
 - Operator fusion of tensor arithmetic
 - Sharding of tensors across cores / PUs
 - Operator placement on multi-device environments
Review Zoom Poll
Outline

❖ Introduction to Deep Learning
❖ Overview of DL Systems
❖ DL Training
 ❖ Compilation and Execution
 ❖ Distributed Training
❖ DL Inference
❖ Advanced DL Systems Issues
Recap: 3 Parts of DL Training Iterate

- Forward pass to compute loss on mini-batch -> Backprop to compute gradients -> Updates of parameters

Forward pass:

$\mathbf{W}^{(t+1)} \leftarrow \mathbf{W}^{(t)} - \eta \nabla \tilde{L}(\mathbf{W}^{(t)})$

Backprop/Backward pass:

\[
\frac{\partial}{\partial w_{ij}} J(\mathbf{W}) = \delta_j^{(0)} \delta_i^{(1)}
\]

(error term of the output layer)

\[
\delta^{(3)} = a^{(3)} - y
\]

(error term of the hidden layer)
Recap: Distributed SGD via PS

- Distr. SGD needs to sync gradients/params across workers
- PS allows for async updates with gradients/params
Distributed DL Training

❖ **Goal**: Parallelize DL training with SGD on sharded data

❖ Many DL systems support PS-style sync/async distribution

<table>
<thead>
<tr>
<th>Training API</th>
<th>MirroredStrategy</th>
<th>TPUStrategy</th>
<th>MultiWorkerMirroredStrategy</th>
<th>CentralStorageStrategy</th>
<th>ParameterServerStrategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keras API</td>
<td>Supported</td>
<td>Supported</td>
<td>Experimental support</td>
<td>Experimental support</td>
<td>Supported planned post 2.3</td>
</tr>
<tr>
<td>Custom training loop</td>
<td>Supported</td>
<td>Supported</td>
<td>Experimental support</td>
<td>Experimental support</td>
<td>Supported planned post 2.3</td>
</tr>
<tr>
<td>Estimator API</td>
<td>Limited Support</td>
<td>Not supported</td>
<td>Limited Support</td>
<td>Limited Support</td>
<td>Limited Support</td>
</tr>
</tbody>
</table>

❖ Unfortunately, PS is a poor fit for most of DL:
❖ Non-trivial sizes of DL gradients, unlike classical ML
❖ Heavily communication-bound; very sub-linear speedup
❖ NB: PS was designed before the DL era!

https://www.tensorflow.org/guide/distributed_training
Introducing Horovod

❖ **Goal:** Mitigate the communication bottleneck of distributed DL training, esp. for exchanging/syncing gradients

❖ **Basic Idea:**
Introducing Horovod

❖ **Goal**: Mitigate communication bottleneck for distributed DL training, especially to synchronize gradients

❖ **Intuition**: Do not sync up all gradients of DL NCG at once

❖ **Basic Idea**: “Ring AllReduce” from HPC world
 ❖ **Decentralized**, i.e., no designated master/server
 ❖ **Ring topology** for workers to talk to each other
 ❖ **Sharded updates** exchanged among workers instead of sending all gradients of an iterate in one go
 ❖ **Multiple rounds** of talking for all to get in sync

❖ Logically equivalent to sequential SGD! No PS-style heuristics with stale updates, etc.
Assume a DL NCG’s params/grads are logically sharded on a worker into roughly equi-sized bins.

In each round, a worker sends a bin and receives a different bin used to update resp. local copy; repeat until all synced.
Ring AllReduce Parallelization

- Given N workers, each talks to 2 peers $2^{(N-1)}$ times to sync up one iterate.
- Do this for every iterate (mini-batch) of SGD.
Horovod vs PS

❖ Horovod is *synchronous* unlike PS philosophy but still better
❖ 2 key benefits of Horovod’s Ring AllReduce vs PS:
 ❖ Better network utilization due to decentralization; it is bandwidth-optimal
 ❖ Lower communication costs

N workers, M gradients/params size, K mini-batches per worker

Total per-epoch comm. cost:
- PS: 2MNK
- Horovod: MNK
- Horovod: 2M(N-1)K
Empirical Comparisons

- Horovod has higher speedups than PS (up to a limit)

![Training with synthetic data on NVIDIA® Pascal™ GPUs](image-url)
PyTorch’s DDP (Distr. Data Parallel) DL training added a few more systems tricks beyond Ring AllReduce:

- Gradient Bucketing (exact)
- Communication-Computation Pipelining (exact)
- Send updates after every few mini-batches (heuristic)

The first two preserve accuracy but third may hurt accuracy
Distr. PyTorch: Gradient Bucketing

- **Observation:** An NCG has multiple layers of gradients
- **Basic Idea:** “Bucket” multiple gradients onto one bin to reduce number of invocations of AllReduce
- (Technically already possible in Horovod)
Observation: Waiting for whole backprop to finish per iterate before syncing keeps network idle; likewise while network is working, worker’s PU is idle.

Basic Idea: Stage layer’s gradients (adjust bin size) to *interleave* backprop computation with communication.

- Standard systems trick of pipeline parallelism to hide (network) I/O latency.
Distr. PyTorch: Scalability

- Strangely, they show only scaleup plot, not speedup plots
- Scaleup depends on model and hardware
Tradeoffs of Horovod / Distr. PyTorch

<table>
<thead>
<tr>
<th>Pros:</th>
<th>Cons:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability: Supports large DL models; reproducible</td>
<td>PyTorch is not well integrated with ETL stacks</td>
</tr>
<tr>
<td>Manageability: Horovod integrated with Spark and DL tools</td>
<td>Distr. PyTorch hard to operate/govern; fault tol. hard in both</td>
</tr>
<tr>
<td>Efficiency: Faster than PS and other distr. SGD tools; works for dense DL too</td>
<td>Still high comm. cost; somewhat sub-linear scaling</td>
</tr>
<tr>
<td>Scalability: Reasonably high; work for dozens of nodes</td>
<td>Not suitable for very large clusters; speedup flattens</td>
</tr>
<tr>
<td>Developability: No worrying about consistency tradeoffs</td>
<td>Need DL systems expertise</td>
</tr>
</tbody>
</table>
Review Questions

❖ Why is PS a poor fit for DL training?
❖ Why does Horovod perform better than PS for DL training?
❖ Are there disadvantages of distributed PyTorch over Horovod?
Discussion on TensorFlow paper
Outline

❖ Introduction to Deep Learning
❖ Overview of DL Systems
❖ DL Training
 ❖ Compilation and Execution
 ❖ Distributed Training
❖ DL Inference
❖ Advanced DL Systems Issues
Why Study DL Inference?

- DL inference is a strict subset of training: on an example, just do forward pass to get prediction.

 Q: Why bother optimizing DL inference any further?

- Qualitative differences of inference vs training:
 - Happens *far more often* than training; economies of scale for reducing inference cost.
 - Many apps need *near real-time* inference, e.g., Web.
 - NCG/weights are *fixed* for inference stage, enabling deeper systems optimizations.
Background: Roofline Analysis

- A tool from comp. arch. to understand if/how some systems optimizations can help
- Fundamental issue: keep PU busy vs memory stalls
Optimizing NCG Inference

- DL models tend to have high arithmetic intensity; but there is a spectrum on memory-bound vs compute-bound.

- Different layers within same DL models also fall on diff. points in the spectrum.

- Hand-optimizing is tedious/hard; need automated compiler to do it.

Figure 10: Roofline [47] of an FPGA-based DL accelerator running ResNet inference. With latency hiding enabled by TVM, performance of the benchmarks is brought closer to the roofline, demonstrating higher compute and memory bandwidth efficiency.
The TVM Compiler

❖ **Goal**: A unified compiler to support multiple DL frameworks’ inference on multiple hardware backends extensibly

❖ **Challenges**: hardware heterogeneity; so many DL ops
The TVM Compiler

❖ **Approach**: A unified intermediate representation (IR) + series of optimizations + ML-based instruction scheduler

![Diagram of the TVM Compiler process]

- **Frameworks**
- Computational Graph
- **Section 3**
 - High Level Graph Rewriting
 - Optimized Computational Graph
- **Section 4**
 - Declarative Tensor Expressions
 - Hardware-Aware Optimization Primitives
- **Section 5**
 - Machine Learning Based Automated Optimizer
 - Optimized Low Level Loop Program
 - Accelerator Backend
 - LLVM IR
 - CUDA/Metal/OpenCL
- Deployable Module
Compiler Optimizations in TVM

❖ Standard compilers tricks (matters for any PL):
 ❖ Operator fusion
 ❖ Data layout transformations
 ❖ Nested parallelism for memory access

❖ New techniques designed for DL NCGs and hardware:
 ❖ Tensorization of almost all ops
 ❖ Pipelining to hide memory stalls
 ❖ ML-based schedule generation
Operator Fusion

- **Technique:** Combine two or more tensor ops into a single “larger” op
- **Benefit:** Avoids memory stall for intermediate results; so, helps reduce runtimes, especially on GPUs
- **TVM categories all tensor ops based on fusability and has rules to inject this optimization**
Data Layout Transformations

❖ **Technique:** Sharding intermediate tensors in axis-oriented or tile-oriented
❖ **Benefit:** Maximizes data parallelism for ops on PUs
❖ Too complex to handcode with rules
❖ TVM decouples tensor op spec. vs exact instructions by using a code-generation approach
 ❖ Allows for backend-specific unrolling and sizing
Data Layout Transformations

A = t.placeholder([1024, 1024])
B = t.placeholder([1024, 1024])
k = t.reduce_axis([0, 1024])
C = t.compute([1024, 1024], lambda y, x:
 t.sum(A[k, y] + B[k, x], axis=k))
s = t.create_schedule(C.op)

for y in range(1024):
 for x in range(1024):
 C[y][x] = 0
 for k in range(1024):
 C[y][x] += A[k][y] * B[k][x]

+ Loop Tiling

yo, xo, ko, yi, xi, ki = s[C].tile(y, x, k, 8, 8, 8)

for yo in range(128):
 for xo in range(128):
 C[yo*8:yo*8+8][xo*8:xo*8+8] = 0
 for ko in range(128):
 for yi in range(8):
 for xi in range(8):
 C[yo*8+yi][xo*8+xi] +=
 A[ko*8+ki][yo*8+yi] * B[ko*8+ki][xo*8+xi]

+ Cache Data on Accelerator Special Buffer

CL = s.cache_write(C, vdladacc.buffer)
AL = s.cache_read(A, vdladacc.inp_buffer)
additional schedule steps omitted...

+ Map to Accelerator Tensor Instructions

s[CL].tensorize(yi, vdladacc.gemm8x8)
inp_buffer AL[8][8], BL[8][8]
acc_buffer CL[8][8]
for yo in range(128):
 for xo in range(128):
 vdladacc.fill_zero(CL)
 for ko in range(128):
 vdladacc.dma_copy2d(AL, A[ko*8:ko*8+8][yo*8:yo*8+8])
 vdladacc.dma_copy2d(BL, B[ko*8:ko*8+8][xo*8:xo*8+8])
 vdladacc.fused_gemm8x8_add(CL, AL, BL)
 vdladacc.dma_copy2d(C[yo*8:yo*8+8,xo*8:xo*8+8], CL)
Nested Parallelism

- GPUs have complex hierarchy of on-device memory/caches
- **Technique:** Groups of threads fetch shared data regions (e.g., accumulator) to higher cache and reuse it
- **Benefit:** Reduces delay caused by memory stalls
Tensorization of NCG Ops

- **Technique:** Allow declarations of NCG ops in tensor form
- **Benefit:** Extensibility to convert ops to different forms of parallel micro-kernels on hardware, e.g., lower precision

```python
w, x = t.placeholder((8, 8)), t.placeholder((8, 8))
k = t.reduce_axis((0, 8))
y = t.compute((8, 8), lambda i, j:
    t.sum(w[i, k] * x[j, k], axis=k))

def gemm_intrin_lower(inputs, outputs):
    ww_ptr = inputs[0].access_ptr("r")
    xx_ptr = inputs[1].access_ptr("r")
    zz_ptr = outputs[0].access_ptr("w")
    compute = t.hardware_intrin("gemm8x8", ww_ptr, xx_ptr, zz_ptr)
    reset = t.hardware_intrin("fill_zero", zz_ptr)
    update = t.hardware_intrin("fuse_gemm8x8_add", ww_ptr, xx_ptr, zz_ptr)
    return compute, reset, update

gemm8x8 = t.decl_tensor_intrin(y.op, gemm_intrin_lower)
```
Pipelining to Hide Memory Latency

- **Technique:** Interleave computation instruction and memory access instruction
- **Benefit:** Hides latency of memory stall; keeps PUs busy
- Achieved with multithreading on CPUs and GPUs; for accelerators, TVM has primitives to avoid out-of-order
So many configurable optimization choices (data layouts, lower level kernels, pipelining choices, etc.) make it too complex to create optimal final hardware instructions.

Technique: Use ML in compiler!

- “Explorer” module constructs candidate configs; ML “cost model” predicts performance

Benefit:

<table>
<thead>
<tr>
<th>Method Category</th>
<th>Data Cost</th>
<th>Model Bias</th>
<th>Need Hardware Info</th>
<th>Learn from History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackbox auto-tuning</td>
<td>high</td>
<td>none</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Predefined cost model</td>
<td>none</td>
<td>high</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>ML based cost model</td>
<td>low</td>
<td>low</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
ML-based Instruction Schedule

TensorOp Specification

Schedule Space Template

Database

log

Schedule Explorer

ML Cost Model

query

update

rpc

get_perf

Device Cluster

Raspberry Pi

Mali GPU

Nvidia GPU

FPGA Board

...
Tradeoffs of TVM for DL Inference

<table>
<thead>
<tr>
<th>Pros:</th>
<th>Cons:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability:</td>
<td>N/A (compiler is mostly hidden from DL users)</td>
</tr>
<tr>
<td>Highly general; supports many DL tools and hardware backends</td>
<td></td>
</tr>
<tr>
<td>Manageability:</td>
<td>Extra dependency to manage for DL users</td>
</tr>
<tr>
<td>Apache project; large community to help</td>
<td></td>
</tr>
<tr>
<td>Efficiency:</td>
<td>Likely slower than an ASIC-specific compiler stack</td>
</tr>
<tr>
<td>Faster than CuDNN on GPUs; fast on other h/w</td>
<td></td>
</tr>
<tr>
<td>Scalability:</td>
<td>Does not (yet) support larger-than-RAM models</td>
</tr>
<tr>
<td>N/A (for inference)</td>
<td></td>
</tr>
<tr>
<td>Developability:</td>
<td>DL tool engineers must use TVM primitives for best perf.</td>
</tr>
<tr>
<td>Easily extensible; many optimizations port well</td>
<td></td>
</tr>
</tbody>
</table>
Review Zoom Poll
Outline

❖ Introduction to Deep Learning
❖ Overview of DL Systems
❖ DL Training
 ❖ Compilation and Execution
 ❖ Distributed Training
❖ DL Inference
❖ Advanced DL Systems Issues
In some DL sub-families, especially in NLP, models can be larger than GPU memory!

- Commodity GPUs: 6-12GB; higher end 24-32GB; can amplify with NVlink
- BERT/GPT etc. up to ~6GB; 100Ms parameters
- Need space for data and intermediate too
Model Scalability

Transformer modules and architecture common in NLP:

http://jalammar.github.io/illustrated-transformer/
Another DL sub-family with this issue: graph+convolutional NNs, e.g., in spatial/graph and video analytics

Model Scalability

❖ Typical approach today: **model parallelism**
 ❖ Shard model across multiple GPUs
 ❖ Exchange features / backprop updates periodically

❖ Layer-aligned sharding typically works better to reduce inter-GPU comm. costs

Model Scalability

❖ A common optimization with layer-aligned sharding: pipelining of forward passes (and backward passes) across subsequent data mini-batches

Model Scalability

❖ Speedups are often very sublinear (but is that the point?)
❖ Open issue to raise speedups for complex DL models
Model Batching

❖ At other extreme, many DL models underutilize GPUs

❖ **Batching:** Run multiple models concurrently on same GPU

❖ Requires rewriting lower level kernels of DL system to use CUDA kernels, memory, etc. properly!

❖ VMware and other firms are “virtualizing” GPUs to make multi-tenancy easier without reimpl. DL software
