Web Mining and Recommender Systems

Recommender Systems: Introduction

Learning Goals

* Introduced the topic of
recommender systems and explain
how they relate to supervised and
unsupervised learning

Why recommendation?

The goal of recommender systems is...
* To help people discover new content

Recommendations for You in Amazon Instant Video see more

Why recommendation?

The goal of recommender systems is...
* To help us find the content we were
already Iooklng for

Harry Potter and the Sorcerer's Stone 2001 rsss

is eleventh birthday

Are these
recommendations
good or bad?

Why recommendation?

The goal of recommender systems is...
» To discover which things go together

Calvin Klein Men's Relaxed Straight Leg Jean In Cove
LA 8 0.1 ~ 20 customer reviews

Price: $48.16 - $69.99 & FREE Returns. Details
Size:
Select v Sizinginfo | Fit: As expected (55%) ~

Color: Cove

+ 98% Cotton/2% Elastane

- Imported

+ Button closure

+ Machine Wash

+ Relaxed straight-leg jean in light-tone denim featuring whiskering and five-pocket styling
+ Zip fiy with button

+ 10.25-inch front rise, 19-inch knee, 17.5-inch leg opening

Frequently Bought Together

Pagh oS Pl =
Calvin Klein Jeans Calvin Klein Jeans Calvin Klein Jeans Levis
$57.94 - $69.50 $49.92 $50.67 - $69.99 $23.99 - $68.00

Page

Why recommendation?

The goal of recommender systems is...
» To personalize user experiences In
response to user feedback

JUICY FRUIT
GUMWITH I&G\E
STARBURST :
FLAVORS

CLICK FOR SWEETVIDEO >

Why recommendation?

The goal of recommender systems is...
» To recommend incredible products
that are relevant to our interests

GUM WITH J@&\¢
STARBURST

; £ .
. \ ¢y .
\ 2! FLAVORS :
CLICK FOR SWEETVIDEO >

Why recommendation?

The goal of recommender systems is...
* To identify things that we like

Results for ‘mad max' [LLELRL L
1979 [R] 93 minutes

% |n a postapocalyptic future, jaded motorcycle cop Max
* Rockatansky is ready to retire. But his world is
., shattered when a malicious gang murders his family
_ asan actof retaliation, forcing a devastated Max to hit ©
" the open road seeking vengeance.

Starring: Mel Gibson, Hugh Keays-Byrne

Director: George Miller
Genre: Sci-Fi & Fantasy
Format: DVD tral

Our best guess for Jeremy

Why recommendation?

The goal of recommender systems is...
* To help people dlscover new content

« To |dent|fy thmgs that we like

Recommending things to people

Suppose we want to build a movie
recommender

e.g. WhICh of these films will I rate hlghest7

o ,

UNRATED

ecommending things to people

Pitch Black - Unrated Director's Cut = (e

A A K I 7.1/10

TCHBLACK _ |
We already have

When their ship crash{ands on 2iremote planet, the marooned passengers soon leam that

escaped convict Riddick (Vin Dieiel) isn't the only thing they have to fear. Deadly creatures

f t I g lurk in the shadows, waiting to attqkk in the dark, and the planet is rapidly plunging into the

[]
| 1 t | b Product Details
I I I I A. Phillips
e a r I g O O OX Genres Science Fictidg Action, Horror

Reviewer ranking: #17 230, 554

Starring
Runtime

UNRATED

Director David Twohy

90% helpful

. . Starring Vin Diesel, RadhfMitc hell
votes received on reviews
(151 of 167)
Supporting actol Cole Hauser, Keitflavid, Lewis Fitz-Gerald, Claudia Black, Rhiana Gr

Angela Moore, Pete) Chiang, Ken Twohy

ABOUT ME Studio
Enjoy the reviews

NBC Universal
R (Restricted)

ACTIVITIES
Reviews (16)
Public Wish List (2}
Listmania Lists (2)
Tagged Items (1)

ions and subtitles English Details +
Rental nghts 24 hour viewing peried. O¥ails ~
Purchase rights Stream instantly and dowri bad to 2 lecations Details ~

Format Amazon Instant Video (stres ning online video and digital download)

: ? :
user features, movie features) — star rating

Recommending things to people

. ? .
f (user features, movie features) — star rating

User features: age, gender, Movie features: genre,
location, etc. actors, rating, length, etc.
Product Details
A. Phillips
Genres Science Fiction, Action, Horror
Reviewer ranking: #17,230,554
Director David Twohy
90% helpful _ o _
votes received on reviews Starring Vin Diesel, Radha Mitchell
(151 of 167) Supporting actors Cole Hauser, Keith David, Lewis Fitz-Gerald, Claudia Black, Rhiana Gr
Angela Moore, Peter Chiang, Ken Twohy
ABOUT ME Studio NBC Universal
Enjoy the reviews. ..))
MPAA rating R (Restricted)
ACTIVITIES Captions and subtitles English Details ~
Reviews (16) Rental rights 24 hour viewing period. Details ~
Public Wish List (2)
Purchase rights Stream instantly and downlead to 2 locatiens Details -

Listmania Lists (2)
Tagged ltems (1) Format Amazon Instant Video (streaming online video and digital download)

Recommending things to people

. ? .
f (user features, movie features) — star rating

With the models we've seen so far, we
can build predictors that account for...

Do women give higher ratings than men?

Do Americans give higher ratings than Australians?

Do people give higher ratings to action movies?

Are ratings higher in the summer or winter?

Do people give high ratings to movies with Vin Diesel?

So what can’t we do yet?

Recommending things to people

. ? .
f (user features, movie features) — star rating

Consider the following linear predictor
(e.g. from week 1):

f(user features, movie features) =

(¢p(user features); ¢(movie features), 6)

Recommending things to people

But this is essentially just two separate
predictors!

f(user features, movie features) =

(p(user features), Oyser) + (P(movie features), Opovie)

\. 7 \. 7
v v

user predictor movie predictor

That Is, we're treating user and movie
features as though they're independent!

Recommending things to people

But these predictors should (obviously?)
not be independent

f(user features, movie features) = f(user) 4+ f(movie)

do | tend to give high ratings? /

does the population tend to give high ratings to this genre of movie?

But what about a feature like “do I give
high ratings to this genre of movie"?

Recommending things to people

Recommender Systems go beyond the methods we've seen so
far by trying to model the relationships between people and
the items they're evaluating

preference < th ,
Toward IS t e.mowe
“action” action-

heavy?

Compatibility

preference toward

. are the special effects good?
“special effects” P J

This section

Recommender Systems
1. (next) Collaborative filtering

(performs recommendation in terms of user/user and item/item
similarity)

2. (later) Latent-factor models

(performs recommendation by projecting users and items into
some low-dimensional space)

3. (later) The Netflix Prize

Web Mining and Recommender Systems

Similarity-based Recommender Systems

Learning Goals

* Introduced some simple
recommendation strategies based on
the notions of user or item similarity

Defining similarity between users & items

Q: How can we measure the similarity
between two users?
A: In terms of the items they
purchased!

Q: How can we measure the similarity
between two items?
A: In terms of the users who purchased
them!

Defining similarity between users & items

Calvin Klein Men's Relaxed Straight Leg Jean In Cove
L. 8. 8. 8.1 ~ 20 customer reviews

Price: $48.16 - $69.99 & FREE Returns. Details

Size:

Select v Sizinginfo | Fit: As expected (55%) ~

Color: Cove
98% Cotton/2% Elastane
« Imported

« Button closure
« Machine Wash

e.g..
Amazon

Relaxed straight-leg jean in light-tone denim featuring whiskering and five-pocket styling
« Zip fly with button

= 10.25-inch front rise, 19-inch knee, 17.5-inch leg opening
Frequently Bought Together
“ Pagh S é
Calvin Klein Jeans
$57.94 - $69.50

Calvin Klein Jeans
$49.92

Calvin Klein Jeans

Levi's
$50.67 - $69.99

$23.99 - $68.00

o

Customers Who Viewed This Item Also Viewed

) | w l"

Customers Who Bought This Item Also Bought

Definitions

Definitions

1,, = set of items purchased by user u

U, = set of users who purchased item i

Definitions

Or equivalently... rl 0 1\
0 O 1
R = . _ . > users
1 0 --- 1/

Ru = binary representation of items purchased by u
R.,,,; = binary representation of users who purchased i

I, = U, =

0. Euclidean distance

Euclidean distance:
e.g. between two items i,j (similarly defined between two users)

Ui \U;| +|U; \U;| = |R; — R

0. Euclidean distance

Euclidean distance:

e.g..U_1={14,8911,23,25,34}
U_2 ={14,6,8911,23,25,34,35,38}
U_3 = {4}
U_4 = {5}

Ui \Us| + Uz \ Uy| =
Us \ Uy| + |Us \ Uy| =

Problem: favors small sets, even if they
have few elements in common

1. Jaccard similarity

Jaccard(A, B)

Jaccard(U;,U;) =

- Maximum of 1 if the two
users purchased exactly the

same set of items
(or if two items were purchased by the
same set of users)

- Minimum of 0 if the two users
purchased completely

disjoint sets of items
(or if the two items were purchased by
completely disjoint sets of users)

2. Cosine similarity

cos(f) =1
(theta = 0) > A and B point in
exactly the same direction

cos(f) = —1
(theta = 180) - A and B point
in opposite directions (won't
actually happen for 0/1 vectors)

cos(f) =0
(theta = 90) > A and B are
orthogonal

Uha,rry potter

(vector representation of
users who purchased
harry potter)

2. Cosine similarity

Why cosine?
 Unlike Jaccard, works for arbitrary vectors
« E.g. what if we have opinions in addition to purchases?

1 0 - 1 -1 0 - 1
0 0 1 0 O —1
R=1 . , e , .
I 0 1 /1 o --- -1

bought and liked /

didn't buy

bought and hated

2. Cosine similarity

E.g. our previous example, now with
"“thumbs-up/thumbs-down” ratings

cos(f) =1
(theta = 0) - Rated by the
same users, and they all agree

cos(f) = —1
(theta = 180) - Rated by the
same users, but they
completely disagree about it

cos(f) =0
(theta = 90) - Rated by
different sets of users

Uharry potter

(vector representation of
users’ ratings of Harry
Potter)

4. Pearson correlation

What if we have numerical ratings
(rather than just thumbs-up/down)?

1 4 0 - 2
—1 0 O 3
m—p
bought and liked /
didn't buy

bought and hated

4. Pearson correlation

What if we have numerical ratings
(rather than just thumbs-up/down)?

4. Pearson correlation

What if we have numerical ratings
(rather than just thumbs-up/down)?

« We wouldn’t want 1-star ratings to be parallel to 5-
star ratings
« So we can subtract the average — values are then
negative for below-average ratings and positive
for above-average ratings

items rated by both users average rating by user v

Sim(u v) — ZiGI}LﬂIU(Ru,i—Ru)(Rv,i_ﬁ!))
Vi ierann, Rui—Ba)? Sier,ar, (Ro.i—Ro)?

4. Pearson correlation

Compare to the cosine similarity:

Pearson similarity (between users):
items rated by both users average rating by user v

ZfieL}mIU (Ru,’i_R_u)(Rv,i_R_vJ)

Sim(u, v) = = =
, \/Zz‘eIunLU (Ru,i—Ruy)? Zie[umIv (Ro,i—Ry)?
Cosine similarity (between users):
. i Ru,iRv,i
Sim(u, v) = 2iclynly

T 2 2
\/ZqzeIumI,U Ru,'i, ZiEIuﬂIU R'v,i

f

Note: slightly different from previous definition. Here similarity is
determined only based on items both users have consumed

4. Pearson correlation

Z'LEIumIfU Ruﬂ?’Rv)T’

2

Cosme(A B) = ||Af|l| |FBII

Sim(u, v) =

[R—

Consider all items in the denominator, or just shared items?

Just shared: two users should be considered maximally similar if they've rated
shared items the same way. If only one user has rated an item, we have no
evidence that the other user is different.

All: Two users who've rated items the same way and only rated the same items
should be more similar than two users who've rated some different items.

Ultimately, these are heuristics, and either definition could be used depending
on the situation

Collaborative filtering in practice
How does amazon generate their recommendations?

Let U, be the set of users

Given a product:
P who viewed it

. |UiNU,|
Rank product ding to:
ankK proaucts according ‘U,L UUJ |

nrrmaumg

.86 .84 .82
Linden, Smith, & York (2003)

(or cosine/pearson)

0

Collaborative filtering in practice

Can also use similarity functions to estimate ratings:

Collaborative filtering in practice

Note: (surprisingly) that we built
something pretty useful out of
nothing but rating data — we

didn't look at any features of the

products whatsoever

Collaborative filtering in practice

But: we still have
a few problems left to address...

1. This is actually kind of slow given a huge
enough dataset — if one user purchases one
item, this will change the rankings of every
other item that was purchased by at least

one user in common
2. Of no use for new users and new items (“cold-
start” problems
3. Won't necessarily encourage diverse results

Learning Outcomes

* Introduced several similarity measures
for different types of data
(interactions, likes, ratings)

* Showed how recommender systems
can operate purely based on
interactions, without observed
features

Web Mining and Recommender Systems

Similarity based recommender — implementation

Learning Goals

» Walk through a quick implementation
of a similarity-based recommender

Code on course webpage

Uses Amazon "Musical Instrument” data from
https://s3.amazonaws.com/amazon-reviews-
pds/tsv/index.txt

https://s3.amazonaws.com/amazon-reviews-pds/tsv/index.txt

Code: Reading the data

Read the data:

In [1]: dimport gzip
from collections import defaultdict
import random
import numpy
import scipy.optimize

In [2]: path = “/home/jmcauley/datasets/mooc/amazon/amazon_reviews_u!:ﬁggical_Instruments:wl_ee.tsv.gz“

In [3]: f = gzip.open(path, 'rt', encoding="utf8")

In [4]: header
header

f.readline()
header.strip().split('\t")

Code: Reading the data

Our goal is to make recommendations of products
based on users’ purchase histories. The only
information needed to do so is user and item IDs

In [5]: dataset = []

In [6]: for line in f:
fields = line.strip().split('\t")
d = dict(zip(header, fields))
d['star_rating'] = int(d['star_rating'])
d["helpful_votes'] = int(d['helpful_votes'])
d['total_votes'] = int(d['total_votes'])
dataset.append(d)

In [7]: dataset[Q]

Out[7]: {'marketplace': '

'customer_id': C45610553

'review _id': 'RMDRLEEEENC0Z9',
‘product_id" : BOCHH62VBGY,
'product_parent': 8218723",

‘product_title': 'AGPtek® 10 Isolated Output 9V 12V 18V Guitar Pedal Board Power Supply Effect Pedals
with Isolated Short Cricuit / Overcurrent Protection',

Code: Useful data structures

Build data structures representing the set of
items for each user and users for each item:

In [8]: # Useful data structures

/I Ui
In [9] p”UsersPerlte defaultdict(set)
itemsPerUsepr~ defaultdict(set)ﬂ

In [10]: itemNames = {}

In [11]: for d in dataset:
user,item = d['customer_id'], d['product_id"]
usersPerItem[item].add(user)
itemsPerUser[user].add(item)
itemNames[item] = d['product_title']

Code: Jaccard similarity

The Jaccard similarity implementation follows the
definition directly:

Jaccard(A, B) = %

In [12]: def Jaccard(sl, s2):
numer = len(sl.intersection(s2))
denom = len(sl.union(s2))
return numer / denom

Recommendation

We want a recommendation function that return items
similar to a candidate item i. Our strategy will be as
follows:

* Find the set of users who purchased i
* |terate over all other items other than (
 For all other items, compute their similarity with {
(and store it)
 Sort all other items by (Jaccard) similarity
* Return the most similar

Code: Recommendation

Now we can implement the recommendation function
itself:

In [13]: def mostSimilar(i):
similarities = [] |U;NU,|
il 1V

users = usersPerItem[i] Jaccard(Uz-, UJ) — [U;00;|
for 12 in usersPerItem: ! J
if i2 == 1: continue

sim = Jaccard(users, usersPerItem[i2])
similarities.append((sim,i2))
similarities.sort(reverse=True)
return similarities[:10]

Code: Recommendation

Next, let's use the code to make a recommendation.
The query is just a product ID:

In [14]: dataset[2]

Out[14]: {'marketplace': 'US',
'customer_id': '6111003',
'review_id': 'RIZR67JKUDBI®',
'‘product_id': 'BOOO6VMBHI',

‘product_parent': '6© .
"product_title':€AudioQuest LP record clean brush 2>
‘product_category': 'Music »

‘star_rating': 3,
'helpful_votes': ©,
'total_votes': 1,

'vine': 'N',

'verified_purchase': 'Y',

'review_headline': 'Three Stars’,
'review_body': 'removes dust. does not clean’,

'review_date': '2015-08-31'}

In [15]: query = dataset[2]['product_id']

Code: Recommendation

Next, let's use the code to make a recommendation.
The query is just a product ID:

In [16]: mostSimilar(query)

Out[16]: [(©.028446389496717725, 'BORRG6I5SSD'),
(0.01694915254237288, 'BOOPO6ISSB'),
(©.015065913370998116, 'BOROAIR482'),
(©.014204545454545454, 'BOQE7MVP3S'),
(©.008955223880597015, 'BO@1255YL2'),
(©.008849557522123894, 'BO@3EIRVO8'),
(©.008333333333333333, 'BO@15VEZ22'),
(©.00821917808219178, 'BOOOO6ISUH'),
(©.008021390374331552, 'BOQOO8BWM7'),
(©.007656967840735069, 'BOOOH2BC4E')]

Code: Recommendation

ltems that were recommended:

In [17]: itemNames[query]

Out[17]: 'AudioQuest LP record clean brush'

In [18]: [itemNames[x[1]] for x in mostSimilar(query)]

Out[18]: ['Shure SFG-2 Stylus Tracking Force Gauge’,
'Shure M97xE High-Performance Magnetic Phono Cartridge’,
'ART Pro Audio DJPRE II Phono Turntable Preamplifier’,
'Signstek Blue LCD Backlight Digital Long-Playing LP Turntable Stylus Force Scale Gauge Tester',
'Audio Technica AT120E/T Standard Mount Phono Cartridge’,
'Technics: 45 Adaptor for Technics 1200 (SFWE@1e)',
'GruvGlide GRUVGLIDE DJ Package',
'STANTON MAGNETICS Record Cleaner Kit',
'Shure M97xE High-Performance Magnetic Phono Cartridge’,
‘Behringer PP400 Ultra Compact Phono Preamplifier']

Recommending more efficiently

Our implementation was not very efficient. The slowest
component is the iteration over all other items:

 Find the set of users who purchased (
* Iterate over all other items other than (
 For all other items, compute their similarity with (
(and store (t)
 Sort all other items by (Jaccard) similarity
« Return the most similar

This can be done more efficiently as most items will
have no overlap

Recommending more efficiently

In fact it is sufficient to iterate over those items
purchased by one of the users who purchased i

 Find the set of users who purchased (
* Iterate over all users who purchased i
 Build a candidate set from all items those users
consumed
* For items in this set, compute their similarity with (
(and store (t)
 Sort all other items by (Jaccard) similarity
* Return the most similar

Code: Faster implementation

Our more efficient implementation works as follows:

In [19]: | def mostSimilarFast(i):
similarities = []
users = usersPerItem[i]
CCandidateltems = set(J>
for u 1n users:
candidateItems = candidateItems.union(itemsPerUser[u])
for i2 in candidateItems:
if i2 == i: continue
sim = Jaccard(users, usersPerItem[i2])
similarities.append((sim,i2))
similarities.sort(reverse=True)
return similarities[:10]

Code: Faster recommendation

Which ought to recommend the same set of items, but
much more quickly:

In [20]: mostSimilarFast(query)

Out[20]: [(©.028446389496717725, 'BOOEO6I5SD"),
(0.01694915254237288, 'BOPOG6ISSB'),
(©.015065913370998116, 'BOOGAIR482"),
(©.814204545454545454, 'BOGE7MVP3S'),
(©.008955223880597015, 'BOO1255YL2"),
(©.008849557522123894, 'BOO3EIRVO8'),
(0.008333333333333333, 'B@O15VEZ22'),
(0.00821917808219178, 'BOOOG6ISUH'),
(©.008021390374331552, 'BOGGOSBWM7"'),
(0.007656967840735069, 'BOOGH2BCAE')]

Learning Outcomes

» Walked through an implementation of
a similarity-based recommender, and
discussed some of the computational
challenges involved

Web Mining and Recommender Systems

Similarity-based rating prediction

Learning Goals

» Show how a similarity-based
recommender can be used for rating
prediction

Collaborative filtering for rating prediction

In the previous section we provided
code to make recommendations
based on the Jaccard similarity

How can the same ideas be used for
rating prediction?

Collaborative filtering for rating prediction

A simple heuristic for rating prediction
works as follows:

* The user (u)'s rating foran itemiis a
weighted combination of all of their
previous ratings for items j
» The weight for each rating is given by
the Jaccard similarity between (and

Collaborative filtering for rating prediction

This can be written as:
r(u,9) = 7 2 jer\ iy Tug - Sim(i, 5)

All items the user has

Normalization rated other than (

constant

Z = jer,\{iy Sim(i, j)

Code: CF for rating prediction

In [22]:

In [23]:

In [24]:

In [25]:

In [26]:

out[26]:

Now we can adapt our previous
recommendation code to predict ratings

More utility data structures

List of reviews per
defaultdict(list) user and per item

defaultdict(list)

reviewsPerUser
reviewsPerItem

for d in dataset:
user,item = d['customer_id'], d['product_id']
reviewsPerUser[user].append(d)
reviewsPerItem[item].append(d)

ratingMean = sum([d['star_rating'] for d in dataset]) / len(dataset)

ratingMean M We'll use the mean rating as
4. 251102772543146 a baseline for comparison

Code: CF for rating prediction

Our rating prediction code works as follows:

In [27]: def predictRating(user,item):
ratings = [] —
atnes = 11 szefu\{}ruj sim (4,)

similarities = []

for d in reviewsPerUser[user]:
i2 = d['product_id']
if i2 == item: continue
ratings.append(d['star_rating'])

similarities.append(Jaccard(usersPerItem[item],usersPerItem[i2]))
if (sum(similarities) > 8):
weightedRatings = [(x*y) for x,y in zip(ratings,similarities)]
return sum(weightedRatings) / sum(similarities)
else:
User hasn't rated any similar items
return ratingMean

Code: CF for rating prediction

As an example, select a rating for prediction:

In [28]: dataset[1]

Out[28]: {'marketplace': 'US',
‘customer_id': '14648079',
‘review_id': 'RZSLOBALIYUNU',
'product_id': "B@O@3LRN53I',
‘product_parent': '986692292°',
'product_title': 'Sennheiser HD203 Closed-Back DJ Headphones',
'product_category': "Musical Instruments’,
‘star_rating': 5,
'helpful_votes': @,
‘total_votes': 9,
‘vine': 'N',
'verified purchase': 'Y',
'review_headline': 'Five Stars’',
'review_body': 'Nice headphones at a reasonable price.’,
'review_date': '2015-088-31'}

In [29]: u,i = dataset[1]['customer_id'], dataset[1]['product_id']

In [3@]: predictRating(u, i)

Out[3@]: 5.8

Code: CF for rating prediction

Similarly, we can evaluate accuracy across the entire corpus:

In [31]: def MSE(predictions, labels):
differences = [(x-y)**2 for x,y in zip(predictions,labels)]
return sum(differences) / len(differences)

In [32]: alwaysPredictMean = [ratingMean for d in dataset]
In [33]: cfPredictions = [predictRating(d['customer_id'], d['product _id']) for d in dataset]
In [34]: labels = [d['star_rating'] for d in dataset]

In [35]: MSE(alwaysPredictMean, labels)

Out[35]: 1.4796142779564334

In [36]: MSE(cfPredictions, labels)

Out[36]: 1.6146130004291683

Collaborative filtering for rating prediction

Note that this is just a heuristic for rating
prediction

* |n fact in this case it did worse (in terms of
the MSE) than always predicting the mean
« We could adapt this to use:
1. A different similarity function (e.g. cosine)
2. Similarity based on users rather than items
3. A different weighting scheme

Learning Outcomes

« Examined the use of a similarity-
based recommender for rating
prediction

Web Mining and Recommender Systems

| atent-factor models

Learning Goals

 Show how recommendation can be
cast as a supervised learning problem

 (Start to) introduce latent factor
models

Summary so far

Recap

1. Measuring similarity between users/items for
binary prediction
Jaccard similarity
2. Measuring similarity between users/items for
real-valued prediction
cosine/Pearson similarity

Now: Dimensionality reduction for real-valued
prediction latent-factor models

L atent factor models

So far we've looked at approaches that
try to define some definition of user/user
and item/item similarity

Recommendation then consists of
* Finding an item (that a user likes (gives a high rating)
 Recommending items that are similar to it (i.e., items
with a similar rating profile to i)

L atent factor models

What we've seen so far are
unsupervised approaches and whether
the work depends highly on whether we

chose a “good” notion of similarity

So, can we perform recommendations
via supervised learning?

| atent factor models

e.g. iIf we can model

f(user features, movie features) — star rating

Then recommendation
will consist of identitying

recommendation(u) = arg Max;cunseen items J (U, 1)

The Nettflix prize

In 2006, Netflix created a dataset of 100,000,000 movie ratings
Data looked like:

(userID, itemID, time, rating)

The goal was to reduce the (R)MSE at predicting ratings:

RMSE(f) — \/% Zu,’i,tétest set(f(u7 i’ t) o Tu,i,t)2

model’s prediction ground-truth

Whoever first manages to reduce the RMSE by 10% versus
Netflix's solution wins $1,000,000

The Nettflix prize

This led to a lot of research on rating
prediction by minimizing the Mean-
Squared Error

NETFLIX

(it also led to a lawsuit against Netflix, once somebody
managed to de-anonymize their data)

We'll look at a few of the main
approaches

Rating prediction

Let’s start with the
simplest possible model:

fgu,’{) =«

user item

Rating prediction

What about the 2" simplest model?

2R

how much does does this item tend

this user tend to .)
to receive higher

rate things above ratings than others
the mean?

Pncnmncl(black = —0.1
4
5 > Biulian = —0.2

Rating prediction

The optimization problem becomes:

arg ming g), (@ + Bu + Bi — Rui)?+ A2, Ba+ 22, 67

J

Y Y

error regularizer

Jointly convex in \beta_i, \beta_u. Can
be solved by iteratively removing the
mean and solving for beta

Jointly convex?

Rating prediction

Differentiate:

arg ming g), (@ + Bu + Bi — Rui)?+ A2, Ba+ 22, 67

Rating prediction

Differentiate:

%%zj - ZiEIu 2(Oé + IBu + /8?, — Ru,z) + 2)\/8'11,
Two ways to solve:

1. "Reqgular” gradient descent

2.Solve 332 =0 (sim. for beta_i, alpha)

Rating prediction

Differentiate:

Sl =3 icr, 2(a+ Bu + Bi — Rui) + 2AB,

dobj __ .
Solve 35! =0:

Rating prediction

lterative procedure — repeat the
following updates until convergence:

Zu,ietrain(Ruai_(/@u_l_/@’i))

O =

Ntrain
/6 L Eie]u Ru,z_(a‘l'ﬁz)
v A+[Ly |
/8- L ZuEU,,; Ru,i_(a‘|—/6u)
= X

(exercise: write down derivatives and convince yourself of
these update equations!)

Rating prediction

Looks good (and actually works
surprisingly well), but doesn't solve the
basic issue that we started with

f(user features, movie features) =

(p(user features), Oyser) + (P(movie features), Opovie)

. 7 . 7
Y Y

user predictor movie predictor

That is, we're still fitting a function that
treats users and items independently

Learning Outcomes

* Introduced (some of) the latent
factor model

* Thought about how describe rating

orediction as a regression/supervised

earning task

* Discussed the history of this type of

recommendation system

Web Mining and Recommender Systems

Latent-factor models (part 2)

Learning Goals

« Complete our presentation of the
latent factor model

Recommending things to people

How about an approach based on
dimensionality reduction?

.e., let's come up with low-dimensional representations of the
users and the items so as to best explain the data

Dimensionality reduction

We already have some tools that ought to
help us, e.g. from dimensionality reduction:

(5 3 1
4 2 1
3 1 3 What is the best low-
R — 2 2 4 rank approximation of
1 5 2 R in terms of the mean-
. . squared error?
\1 2 - 1)

Dimensionality reduction

We already have some tools that ought to
help us, e.g. from dimensionality reduction:

(53 - 1 |
1 9 (square roots of)

1 eigenvalues of RRT

b
Singular Value R ://ZVT
R = D o
ecomposition \

eigenvectors of RR'
\1 2 ... 1)

The “best” rank-K approximation (in terms of the MSE) consists
of taking the eigenvectors with the highest eigenvalues

eigenvectors of RT' R

Dimensionality reduction

But! Our matrix of ratings is only partially
observed; and it's really big!

5 3
/ 4 2 1 \
3 . 3
P .9 4
1 5 "I Missing ratings

SVD is not defined for partially observed matrices, and it is not
practical for matrices with TMx1M+ dimensions

L atent-factor models

Instead, let's solve approximately using
gradient descent

/ 5 3 \ 3\ K-dimensional
representation
4 2 1 of each item
3 - 3 \
R=| = 2 4 1L users R~UV?T

K-dimensional
representation
of each user

;

vl
}—l
(\W)

N
|\

L atent-factor models

Instead, let's solve approximately using
gradient descent

/53... \
4 2 1
3 - 3
R — -2 4
1 5
\1 2 -)

L atent-factor models

Let’s write this as:

f(ua 7’) — /Bu /82 Yu Vi

L atent-factor models

Let's write this as:

f(u,z) =+ Ly + Bi + Yu - i
Our optimization problem is then

arg Ming g Y, ;(@+ButBitvuyi—Rui)*+X 2o, B + 2287 + 2 1ills + 22, 1ull3)
“ J J

Y Y

error regularizer

L atent-factor models

Problem: this is certainly not convex

L atent-factor models

Oh well. We'll just solve it approximately
Again, two ways to solve:

1. "Regular" gradient descent
2.Solve %‘;{bi = (sim. For beta_i, alpha,
etc.)

(Solution 1 is much easier to implement,
though Solution 2 might converge more

quickly/easily)

| atent-factor models (Solution 1)

arg ming g4 >, ; (@ ButBitruvi—Rui) > A [0 B2+ 3 82+ 3 1ill3 + X, 11ull3]

| atent-factor models (Solution 2)

Observation: if we know either the user
or the item parameters, the problem
becomes "easy"

f(uai):a+/8u+/6i‘|"7u"7i

e.g. fix gamma_i — pretend we're fitting parameters for features

L atent-factor models

(Harder solution): iteratively solve the
following subproblems

objective:

arg Ming g Y, ;(@+ButBitvuyi—Rui)*+X 2o, B + 2287 + 2 1ills + 22, 1ull3)

- J
"

= arg min, g objective(a, 3, 7)

1) fix 7. Solve argmin, s, objective(c, 3, 7)
2) fixvu. Solve arg min, s -, objective(a, 3, 7)
3,4,5...) repeat until convergence

Each of these subproblems is “easy” — just regularized least-
squares, like we've been doing since we studied regression.
This procedure is called alternating least squares.

L atent-factor models

Observation: we went from a method
which uses only features:

f (U_SGI; features, movie features) — star rating

User features: Movie features: genre,
age, gender, _actors, rating, length, etc.
location, etc. o

A. Phillips

90% helpful
votes received on reviews

55555

AAAAAAA

to one which completely ignores them:

arg Ming g Y, ;(@+ButBitvuyi—Rui)*+X 2o, B + 2287 + 2 1ills + 22, 1ull3)

L atent-factor models

Should we use features or not?
1) Argument against features:

In principle, the addition of features adds no expressive
power to the model. We could have a feature like “is this an
action movie?”, but if this feature were useful, the model
would “discover” a latent dimension corresponding to action
movies, and we wouldn’t need the feature anyway

In the limit, this argument is valid: as we add more ratings
per user, and more ratings per item, the latent-factor model
should automatically discover any useful dimensions of
variation, so the influence of observed features will disappear

L atent-factor models

Should we use features or not?
2) Argument for features:

But! Sometimes we don’t have many ratings per user/item

Latent-factor models are next-to-useless if either the user or
the item was never observed before

reverts to zero if we've never seen the user before
(because of the regularizer)

L atent-factor models

Should we use features or not?
2) Argument for features:

This is known as the cold-start problem in recommender
systems. Features are not useful if we have many
observations about users/items, but are useful for new users
and items.

We also need some way to handle users who are active, but

don't necessarily rate anything, e.g. through implicit
feedback

Overview & recap

Recently we've followed the
programme below:

1. Measuring similarity between users/items for
binary prediction (e.g. Jaccard similarity)
2. Measuring similarity between users/items for real-
valued prediction (e.g. cosine/Pearson similarity)
3. Dimensionality reduction for real-valued
prediction (latent-factor models)
4. Finally — dimensionality reduction for binary
prediction

Learning Outcomes

» Completed our presentation of the
latent factor model

* Revisited the relationship between
recommendation and other types of
learning

Web Mining and Recommender Systems

One-class recommendation

Learning Goals

* (Briefly) discuss how latent factor
models might be adapted for
Interaction data (advanced)

« Summarize our discussion of
recommender systems so far

One-class recommendation

How can we use dimensionality
reduction to predict binary outcomes?

* Previously we saw regression and logistic regression.
These two approaches use the same type of linear
function to predict real-valued and binary outputs

* We can apply an analogous approach to binary
recommendation tasks

This is referred to as “one-class”
recommendation

One-class recommendation

Suppose we have binary (0/1) observations
(e.g. purchases) or pos./neg. feedback
(thumbs-up/down)

1 0 --- 1 -1 7 - 1

0 O 1 77 —1
R = . . . or

1 0 - 1 1?7 .. =1

/ \ /1

purchased didn't purchase liked didn't evaluate didn't like

One-class recommendation

So far, we've been fitting functions of the
form

R~UV?T

 Let's change this so that we maximize the difference in
predictions between positive and negative items
« E.g.for a user who likes an item (and dislikes an item j we
want to maximize:

maX1n0(7u "Yi T Yu e f)/j)

One-class recommendation

We can think of this as maximizing the
probability of correctly predicting pairwise
preferences, i.e.,

p(¢ is preferred over j) = o(Vu - Vi — Yo - V5)

» As with logistic regression, we can how maximize the
likelihood associated with such a model by gradient ascent
 |In practice it isn't feasible to consider all pairs of
positive/negative items, so we proceed by stochastic gradient
ascent — i.e, randomly sample a (positive, negative) pair and
update the model according to the gradient w.r.t. that pair

One-class recommendation

maxIno(vu - ¥ — Yu - Vj)

Summary

Recap

1. Measuring similarity between users/items for
binary prediction
Jaccard similarity
2. Measuring similarity between users/items for real-
valued prediction
cosine/Pearson similarity
3. Dimensionality reduction for real-valued prediction
latent-factor models
4. Dimensionality reduction for binary prediction
one-class recommender systems

References

Further reading:

One-class recommendation:

Amazon'’s solution to collaborative filtering at scale:

An (expensive) textbook about recommender systems:

Cold-start recommendation (e.g.):

http://goo.gl/08Rh59
http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
http://www.springer.com/computer/ai/book/978-0-387-85819-7
http://wanlab.poly.edu/recsys12/recsys/p115.pdf

Web Mining and Recommender Systems

Extensions of latent-factor models, (and

more on the Netflix prize)

Learning Goals

* Discuss several extensions of the
atent factor model

* Further discuss the history of the
Netflix Prize

Extensions of latent-factor models

So far we have a model that looks like:
f(u,z) :a+/8u+6i‘|‘7u"7i

How might we extend this to:

* Incorporate features about users and items
« Handle implicit feedback
« Change over time

See Yehuda Koren (+Bell & Volinsky)'s magazine article:

“Matrix Factorization Techniques for Recommender Systems”
IEEE Computer, 2009

Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to
describe users or items

A(u) =1[1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u \\

e.g.is female ismale is between 18-24yo

Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to
describe users or items
« Associate a parameter vector with each attribute
« Each vector encodes how much a particular feature
“offsets” the given latent dimensions

A(u) = [1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u

e.g.y_0 =[-0.2,0.3,0.1,-0.4,0.8]
~ "how does being male impact gamma_u”

Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to
describe users or items
« Associate a parameter vector with each attribute
« Each vector encodes how much a particular feature
“offsets” the given latent dimensions
* Model looks like:

f(u,) :a+5u+/8i+(’7u‘|‘zaeA(u) Pa) * Vi

e Fit as usual:
arg Mily, g, ,p Zu,iétrain (I(u, 1) = TuaiJ)Q + A5, 7)

.
v v

error regularizer

Extensions of latent-factor models

2) Implicit feedback

Perhaps many users will never actually rate things, but may
still interact with the system, e.g. through the movies they
view, or the products they purchase (but never rate)

« Adopt a similar approach — introduce a binary vector
describing a user’s actions

N(u) = [1,0,0,0,1,0.....,0,1]

implicit feedback vector for user u

e.g.y_0 =[-0.1,0.2,0.3,-0.1,0.5]
Clicked on “Love Actually” but didn’t watch

Extensions of latent-factor models

2) Implicit feedback

Perhaps many users will never actually rate things, but may
still interact with the system, e.g. through the movies they
view, or the products they purchase (but never rate)

« Adopt a similar approach — introduce a binary vector
describing a user’s actions
* Model looks like:

f(u, i) = a+ By + Bi + (Yu - ||N%u)|| ZaeN(u) Pa) " Vi

normalize by the number of actions the user performed

Extensions of latent-factor models

3) Change over time

There are a number of reasons why rating data might be
subject to temporal effects...

Extensions of latent-factor models

3) Change over time

Rating by date
39 ! ! ! !

Netflix ratings
over time

3.7 Fo

Ne%cflix charémged

3B e ST - A R A -

thgeir interféace!

35 b S R— S S— e —]

earl)%/ 2004

mean score

3.4 —Geaoagoﬁ,ﬁ‘%

) T S S S— S S— -

s
0 500 1000 1500 2000 2500

time (days)

Figure from Koren: "Collaborative Filtering with Temporal Dynamics” (KDD 2009)

Extensions of latent-factor models

3) Change over time

Rating by movie age

movie age

mean score

People tend to give hlgher

3.4 b ___ _
° ratmgs to older mowes
33 oo __ __ ______________________________________ =
32
0 500 1000 1500 2000 2500

movie age (days)

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

Extensions of latent-factor models

3) Change over time

nal tren hort-term tren Fati
3.835 \.'Q'E.a.SD. E.‘ .t L.:' .ds.’ T 3.84 S ? tte. lEIdS 3.90 Elt.guE T
3.830 J.R3
3.82 [385
J.B25 F
> o 3.81 o
= = =S80
T 3.820 © 3.80 ©
& S &
E @ 3.70 @
5 3815 5 S 3.75 |
< < 3.78 <
3810 F
3:77 B 3‘?"{'} |
3.805 F 3.76 |
3.800 3.7 . ' ' 3.65 ' ' '
JFMAMJJASONDUJ S:Oﬁ 6:00 12:00 18:00 24:00 5 10 15 20
Time of year Time of day Beers consumed per day

A few temporal effects from beer reviews

Extensions of latent-factor models

3) Change over time

There are a number of reasons why rating data might be
subject to temporal effects...

24, (CRlEseIEnD i Changes in the interface
with temporal dynamics
Koren, 2009 People give higher ratings to older movies (or, people
e.g. "Sequential & temporal who watch older movies are a biased sample)
dynamics of online opinion” T :
o 1 e 617 The c.om.munltys prefgrences grad.ually change over time
: My girlfriend starts using my Netflix account one day
e.g. "Temporal . -
recommendation on graphs | binge watch all 144 episodes of buffy one week and
via long- and short-term then revert to my normal behavior
preference fusion Y . " . .
Xiang et al, 2010 | become a “connoisseur” of a certain type of movie
e.g. “Modeling the evolution Anchoring, public perception, seasonal effects, etc.

of user expertise through
online reviews”
McAuley & Leskovec, 2013

Extensions of latent-factor models

3) Change over time

Each definition of temporal evolution demands a slightly
different model assumption (we’'ll see some in more detall
later tonight!) but the basic idea is the following:

1) Start with our original model:

f(uai):a+/6u+/6i+7u'7i

2) And define some of the parameters as a function of time:

flu,i,t) = a4+ Bu(t) + Bi(t) + Yu(t) - s

3) Add a regularizer to constrain the time-varying terms:

ArgMiNa, 5y Dy i reprain(f (W85 8) = Tui) + MQUB,) + Aally(t) — (L +0)]]

Y

parameters should change smoothly

Extensions of latent-factor models

3) Change over time

Case study: how do people acquire tastes for beers (and
potentially for other things) over time?

difference between expert and novice ratings (stars)

o
=~

<
o

o
o

|
o
o

|
=
~

RateBeer

| 0ooo Mild Ales
000 Strong Ales

@®e@ Lagers Firestone XV

average product rating (stars)

Bud Light
e . 00s°.
0 1 2 3 5

«— novices rate higher experts rate higher —

Differences between
—~~ "beginner” and “expert”
preferences for different
beer styles

\

Extensions of latent-factor models

4) Missing-not-at-random

« QOur decision about whether to purchase a movie (or
item etc.) is a function of how we expect to rate it
« Even for items we've purchased, our decision to enter a
rating or write a review is a function of our rating
 e.g.some rating distribution from a few datasets:

EachMovie Movielens Netflix

3 05F - 086}
£04 £04 £04}
8 = 2
= =] El
€03 a 03 < 03} -
§ 02b E 0.2 &'ﬁ 02

o1/ 0.1 0.1

0

0
1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5
Rating Value Rating Value Rating Value

Figure from Marlin et al. “Collaborative Filtering and the Missing at Random Assumption” (UAI 2007)

Extensions of latent-factor models

4) Missing-not-at-random

e.g. Men's watches:

* 0

Island WFM1000SCDLI Diamonds Men's 18K Gold Rolex Yachtmaster Il Model # 116688

Id Case Black Leather Men's Watch by Rolex

$34,880.00

Show only Rolex items
items sedr i v o4

“ Now when I take him for a walk I know I am impressing
people even more than I EVER did when I merely walked my
monkey while wearing this wonderful wateh. *

Dr. Space | 11 reviewers made a similar statement

g “ You also placed a review on a watch you don't own in order
to spew . *
A Wright | 3 reviewers made a similar statement

“ The Yachtmaster II for sale here is solid 18k gold and it
houses the first and as far as I know the only programmable,
mechanical watch in the history of horology. **

GradyPhilpott | 4 reviewers made a similar statement

RULEA SKT-DVVELLER VWHITE GULLD VAT GH BLAGK

Extensions of latent-factor models

4) Missing-not-at-random

« QOur decision about whether to purchase a movie (or
item etc.) is a function of how we expect to rate it
« Even for items we've purchased, our decision to enter a
rating or write a review is a function of our rating
« So we can predict ratings more accurately by building
models that account for these differences
1. Not-purchased items have a different prior on ratings
than purchased ones
2. Purchased-but-not-rated items have a different prior on
ratings than rated ones

Figure from Marlin et al. “Collaborative Filtering and the Missing at Random Assumption” (UAI 2007)

Moral(s) of the story

How much do these extension help?

091

s P20

=== With biases

ms With implicit feedback
=== With temporal dynamics (v.1)|
=== With temporal dynamics (v.2)

0.905

Moral: increasing 09
complexity helps a

0.895

bit, but changing &
the model can 0
help a lot 0885
0.88
0.875

1,00
@ms of panm@

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

Moral(s) of the story

So what actually happened with Netflix?

« The AT&T team “BellKor”, consisting of Yehuda Koren, Robert Bell, and Chris
Volinsky were early leaders. Their main insight was how to effectively
incorporate temporal dynamics into recommendation on Netflix.

« Before long, it was clear that no one team would build the winning solution,

and Frankenstein efforts started to merge. Two frontrunners emerged, “BellKor's
Pragmatic Chaos”, and “The Ensemble”.

* The BellKor team was the first to achieve a 10% improvement in RMSE, putting
the competition in “last call” mode. The winner would be decided after 30 days.

« After 30 days, performance was evaluated on the hidden part of the test set.
» Both of the frontrunning teams had the same RMSE (up to some precision) but
BellKor's team submitted their solution 20 minutes earlier and won $1,000,000

For a less rough summary, see the Wikipedia page about the Netflix prize,

and the nytimes article about the competition:

http://goo.gl/WNpy7o

Moral(s) of the story

Afterword

« Netflix had a class-action lawsuit filed against them after somebody de-
anonymized the competition data
« $1,000,000 seems to be incredibly cheap for a company the size of Netflix in
terms of the amount of research that was devoted to the task, and the potential
benefit to Netflix of having their recommendation algorithm improved by 10%
« Other similar competitions have emerged, such as the Heritage Health Prize
($3,000,000 to predict the length of future hospital visits)

« But... the winning solution never made it into production at Netflix — it's a
monolithic algorithm that is very expensive to update as new data comes in*

*source: a friend of mine told me and | have no actual evidence of this claim

Moral(s) of the story

Finally...

Q: Is the RMSE really the right approach? Will improving rating prediction by 10%
actually improve the user experience by a significant amount?
A: Not clear. Even a solution that only changes the RMSE slightly could drastically
change which items are top-ranked and ultimately suggested to the user.
Q: But... are the following recommendations actually any good?
A1: Yes, these are my favorite movies!
or A2: No! There's no diversity, so how will | discover new content?

e

(ES |
. 2 e B 00775
5.0 stars 5.0 stars 5.0 stars 5.0 stars 4.9 stars 4.9 stars 4.8 stars 4.8 stars

S~

predicted rating

Summary

Various extensions of latent factor models:

* Incorporating features
e.g. for cold-start recommendation
* Implicit feedback
e.g. when ratings aren't available, but other actions are
* Incorporating temporal information into latent factor models
seasonal effects, short-term “bursts’, long-term trends, etc.
* Missing-not-at-random
(ncorporating priors about items that were not bought or rated

* The Netflix prize

Learning Outcomes

* Discussed several extensions of latent
factor models

 Described what types of solutions
worked on the Netflix Prize

* Thought about potential limitations of
the solutions we've seen so far

References

Further reading:

Yehuda Koren's, Robert Bell, and Chris Volinsky's IEEE computer article:

Paper about the “Missing-at-Random” assumption, and how to address it:
Collaborative filtering with temporal dynamics:

Recommender systems and sales diversity:

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf
http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf
http://research.yahoo.com/files/kdd-fp074-koren.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=955984

