
Web Mining and Recommender Systems

Dimensionality Reduction

Learning Goals

In this section we want to:
• Introduce dimensionality reduction

• Explore different interpretations of low-

dimensional structures

• Discuss the relationship between supervised

and unsupervised learning

This section

How can we build low dimensional

representations of high

dimensional data?

e.g. how might we (compactly!) represent

1. The ratings I gave to every movie I’ve watched?

2. The complete text of a document?

3. The set of my connections in a social network?

Dimensionality reduction

Q1: The ratings I

gave to every

movie I’ve watched
(or product I’ve purchased)

F_julian = [0.5, ?, 1.5, 2.5, ?, ?, … , 5.0]

A-team ABBA, the movie Zoolander

A1: A (sparse) vector including all movies

Dimensionality reduction

F_julian = [0.5, ?, 1.5, 2.5, ?, ?, … , 5.0]

Incredibly high-dimensional
• Costly to store and manipulate

• Not clear how to add new dimensions

• Missing data

• Many dimensions are associated with obscure products

• Not clear how to use this representation for prediction

A1: A (sparse) vector including all movies

Dimensionality reduction

A2: Describe my preferences using a

low-dimensional vector

my (user’s)

“preferences”

e.g. Koren & Bell (2011)

HP’s (item)

“properties”
preference

Toward

“action”

preference toward

“special effects”

Recommender

Systems

Dimensionality reduction

Q2: How to represent the complete text

of a document?

F_text = [150, 0, 0, 0, 0, 0, … , 0]

a aardvark zoetrope

A1: A (sparse) vector counting all words

Dimensionality reduction

F_text = [150, 0, 0, 0, 0, 0, … , 0]

A1: A (sparse) vector counting all words

Incredibly high-dimensional…
• Costly to store and manipulate

• Many dimensions encode essentially the same thing

• Many dimensions devoted to the “long tail” of obscure

words (technical terminology, proper nouns etc.)

Dimensionality reduction

A2: A low-dimensional vector describing

the topics in the document

topic

model

Action:
action, loud, fast, explosion,…

Document topics

(review of “The Chronicles of Riddick”)

Sci-fi
space, future, planet,…

Dimensionality reduction

Q3: How to represent connections

in a social network?

A1: An adjacency

matrix!

Dimensionality reduction

A1: An adjacency matrix

Seems almost reasonable, but…
• Becomes very large for real-world networks

• Very fine-grained – doesn’t straightforwardly encode

which nodes are similar to each other

Dimensionality reduction

A2: Represent each node/user in terms

of the communities they belong to

communities

f =

e.g. from a PPI network; Yang, McAuley, & Leskovec (2014)

f = [0,0,1,1]

Why dimensionality reduction?

Goal: take high-dimensional data,

and describe it compactly using a

small number of dimensions

Assumption: Data lies

(approximately) on some low-

dimensional manifold
(a few dimensions of opinions, a small number of

topics, or a small number of communities)

Why dimensionality reduction?

Unsupervised learning

• Today our goal is not to solve some specific

predictive task, but rather to understand the

important features of a dataset

• We are not trying to understand the process

which generated labels from the data, but rather

the process which generated the data itself

Why dimensionality reduction?

Unsupervised learning

• But! The models we learn will prove useful when it comes to

solving predictive tasks later on, e.g.

• Q1: If we want to predict which users like which movies, we

need to understand the important dimensions of opinions

• Q2: To estimate the category of a news article (sports,

politics, etc.), we need to understand topics it discusses

• Q3: To predict who will be friends (or enemies), we need to

understand the communities that people belong to

Coming up…

Dimensionality reduction, clustering,

and community detection

• Principal Component Analysis

• K-means clustering

• Hierarchical clustering

• Later: Community detection
• Graph cuts

• Clique percolation

• Network modularity

Web Mining and Recommender Systems

Principal Component Analysis

Learning Goals

• Present Principal Components

Analysis

Principal Component Analysis

Principal Component Analysis (PCA) is

one of the oldest (1901!) techniques to

understand which dimensions of a high-

dimensional dataset are “important”

Why?

• To select a few important features

• To compress the data by ignoring

components which aren’t meaningful

Principal Component Analysis

Motivating example:

Suppose we rate restaurants in terms of:
[value, service, quality, ambience, overall]

• Which dimensions are highly correlated (and how)?

• Which dimensions could we “throw away” without losing

much information?

• How can we find which dimensions can be thrown away

automatically?

• In other words, how could we come up with a “compressed

representation” of a person’s 5-d opinion into (say) 2-d?

Principal Component Analysis

Suppose our data/signal is an MxN matrix

M = number of features

(each column is a data point)

N = number of observations

Principal Component Analysis

We’d like (somehow) to recover this signal

using as few dimensions as possible

signal compressed signal (K < M)

(approximate) process to recover

signal from its compressed version

Principal Component Analysis

E.g. suppose we have the following data:

The data

(roughly) lies

along a line

Idea: if we know the position of the point on the line (1D),

we can approximately recover the original (2D) signal

Principal Component Analysis

But how to find the important dimensions?

Find a new basis for the data (i.e., rotate it) such that

• most of the variance is along x0,

• most of the “leftover” variance (not explained by x0) is along x1,

• most of the leftover variance (not explained by x0,x1) is along x2,

• etc.

Principal Component Analysis

But how to find the important dimensions?

• Given an input

• Find a basis

Principal Component Analysis

But how to find the important dimensions?

• Given an input

• Find a basis

• Such that when X is rotated
• Dimension with highest variance is y_0

• Dimension with 2nd highest variance is y_1

• Dimension with 3rd highest variance is y_2

• Etc.

Principal Component Analysis

rotate

discard lowest-

variance

dimensions
un-rotate

Principal Component Analysis

For a single data point:

Principal Component Analysis

Principal Component Analysis

And replace the others by constantsKeep K dimensions of y

For a single data point:

Principal Component Analysis

We want to fit the “best” reconstruction:

i.e., it should minimize the MSE:

“complete” reconstruction

approximate reconstruction

Principal Component Analysis

Simplify…

Principal Component Analysis

Expand…

Principal Component Analysis

(due to orthonormality of) –

expand and convince ourselves

This simplifies to:

Principal Component Analysis

Principal Component Analysis

Equal to the variance in

the discarded dimensions

Principal Component Analysis

PCA: We want to keep the dimensions

with the highest variance, and discard the

dimensions with the lowest variance, in

some sense to maximize the amount of

“randomness” that gets preserved when

we compress the data

Principal Component Analysis

(subject to orthonormal)

Expand in terms of X

(subject to orthonormal)

Principal Component Analysis

(subject to orthonormal)

Lagrange multiplier

Lagrange multipliers:

Bishop appendix E

Principal Component Analysis

Solve:

(Cov(X) is symmetric)

• This expression can only be satisfied if phi_j and

lambda_j are an eigenvectors/eigenvalues of the

covariance matrix

• So to minimize the original expression we’d discard

phi_j’s corresponding to the smallest eigenvalues

Principal Component Analysis

Moral of the story: if we want to

optimally (in terms of the MSE) project

some data into a low dimensional

space, we should choose the projection

by taking the eigenvectors

corresponding to the largest

eigenvalues of the covariance matrix

Principal Component Analysis

Example 1:

What are the principal components of

people’s opinions on beer?

(code available on course webpage)

Principal Component Analysis

Example 2:

What are the principal dimensions of

image patches?

=(0.7,0.5,0.4,0.6,0.4,0.3,0.5,0.3,0.2)

Principal Component Analysis

Construct such vectors from 100,000

patches from real images and run PCA:

Black and white:

Principal Component Analysis

Construct such vectors from 100,000

patches from real images and run PCA:

Color:

Principal Component Analysis

From this we can

build an algorithm

to “denoise” images

Idea: image patches should be

more like the high-eigenvalue

components and less like the

low-eigenvalue components

input output
McAuley et. al (2006)

Principal Component Analysis

• We want to find a low-dimensional

representation that best compresses or

“summarizes” our data

• To do this we’d like to keep the dimensions with

the highest variance (we proved this), and

discard dimensions with lower variance.

Essentially, we’d like to capture the aspects of

the data that are “hardest” to predict, while

discard the parts that are “easy” to predict

• This can be done by taking the eigenvectors of

the covariance matrix

Learning Outcomes

• Introduced and derived PCA

• Explained how dimensionality

reduction can be cast as describing

patterns of variation in datasets

Web Mining and Recommender Systems

Clustering – K-means

Learning Goals

• Introduce the K-means classifier

• Explain how the notion of "low-

dimensional" can mean different

things for different datasets

Principal Component Analysis

rotate

discard lowest-

variance

dimensions
un-rotate

Clustering

Q: What would PCA do with this data?

A: Not much, variance is about equal

in all dimensions

Clustering

But: The data are highly clustered

Idea: can we compactly

describe the data in terms

of cluster memberships?

K-means Clustering

cluster 3 cluster 4

cluster 1

cluster 2

1. Input is

still a matrix

of features:

2. Output is a

list of cluster

“centroids”:

3. From this we can

describe each point in X

by its cluster membership:

f = [0,0,1,0]
f = [0,0,0,1]

K-means Clustering

Given features (X) our

goal is to choose K

centroids (C) and cluster

assignments (Y) so that

the reconstruction error is

minimized

Number of data points

Feature dimensionality

Number of clusters

(= sum of squared distances from assigned centroids)

K-means Clustering

Q: Can we solve this optimally?

A: No. This is (in general) an NP-Hard

optimization problem

See “NP-hardness of Euclidean

sum-of-squares clustering”,

Aloise et. Al (2009)

K-means Clustering

1. Initialize C (e.g. at random)

2. Do

3. Assign each X_i to its nearest centroid

4. Update each centroid to be the mean

of points assigned to it

5. While (assignments change between iterations)

(also: reinitialize clusters at random should they become empty)

Greedy algorithm:

Learning Outcomes

• Introduced the K-means classifier

• Gave a greedy solution for the K-

means algorithm

K-means Clustering

Further reading:
• K-medians: Replaces the mean with the

meadian. Has the effect of minimizing the

1-norm (rather than the 2-norm) distance

• Soft K-means: Replaces “hard”

memberships to each cluster by a

proportional membership to each cluster

Web Mining and Recommender Systems

Clustering – Hierarchical Clustering

Learning Goals

• Introduce hierarchical clustering

Principal Component Analysis

rotate

discard lowest-

variance

dimensions
un-rotate

Principal Component Analysis

Q: What would PCA do with this data?

A: Not much, variance is about equal

in all dimensions

K-means Clustering

cluster 3 cluster 4

cluster 1

cluster 2

1. Input is

still a matrix

of features:

2. Output is a

list of cluster

“centroids”:

3. From this we can

describe each point in X

by its cluster membership:

f = [0,0,1,0]
f = [0,0,0,1]

Hierarchical clustering

Q: What if our clusters are hierarchical?

Level 1

Level 2

Hierarchical clustering

Q: What if our clusters are hierarchical?

Level 1

Level 2

Hierarchical clustering

[0,1,0,0,0,0,0,0,0,0,0,0,0,0,1]

[0,1,0,0,0,0,0,0,0,0,0,0,0,0,1]

[0,1,0,0,0,0,0,0,0,0,0,0,0,1,0]

[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0]

[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0]

[0,0,1,0,0,0,0,0,0,0,1,0,0,0,0]

membership @

level 2

membership @

level 1

A: We’d like a representation that encodes that points

have some features in common but not others

Q: What if our clusters are hierarchical?

Hierarchical clustering

Hierarchical (agglomerative) clustering

works by gradually fusing clusters whose

points are closest together

Assign every point to its own cluster:

Clusters = [[1],[2],[3],[4],[5],[6],…,[N]]

While len(Clusters) > 1:

Compute the center of each cluster

Combine the two clusters with the nearest centers

Example

Hierarchical clustering

If we keep track of the order in which

clusters were merged, we can build a

“hierarchy” of clusters

1 2 43 6 875

43 6 7

6 75

6 75 8

432

4321

6 75 84321

(“dendrogram”)

Hierarchical clustering

Splitting the dendrogram at different

points defines cluster “levels” from which

we can build our feature representation

1 2 43 6 875

43 6 7

6 75

6 75 8

432

4321

6 75 84321

Level 1

Level 2

Level 3

1: [0,0,0,0,1,0]

2: [0,0,1,0,1,0]

3: [1,0,1,0,1,0]

4: [1,0,1,0,1,0]

5: [0,0,0,1,0,1]

6: [0,1,0,1,0,1]

7: [0,1,0,1,0,1]

8: [0,0,0,0,0,1]

L1, L2, L3

Model selection

• Q: How to choose K in K-means?
(or:

• How to choose how many PCA dimensions to keep?

• How to choose at what position to “cut” our

hierarchical clusters?

• (later) how to choose how many communities to

look for in a network)

Model selection

1) As a means of “compressing” our data
• Choose however many dimensions we can afford to

obtain a given file size/compression ratio

• Keep adding dimensions until adding more no longer

decreases the reconstruction error significantly

of dimensions

M
S
E

Model selection

2) As a means of generating potentially

useful features for some other predictive

task (which is what we’re more interested

in in a predictive analytics course!)
• Increasing the number of dimensions/number of

clusters gives us additional features to work with, i.e., a

longer feature vector

• In some settings, we may be running an algorithm

whose complexity (either time or memory) scales with

the feature dimensionality (such as we saw last week!);

in this case we would just take however many

dimensions we can afford

Model selection

• Otherwise, we should choose however many

dimensions results in the best prediction performance

on held out data

of dimensions

M
S
E
 (

o
n

 t
ra

in
in

g
 s

e
t)

of dimensionsM
S
E
 (

o
n

 v
a
li

d
a
ti

o
n

 s
e
t)

Learning Outcomes

• Introduced hierarchical clustering

• Discussed how validation sets can be

used to choose hyperparameters

(besides just for regularization)

References

Further reading:
• Ricardo Gutierrez-Osuna’s PCA slides (slightly more

mathsy than mine):
http://research.cs.tamu.edu/prism/lectures/pr/pr_l9.pdf

• Relationship between PCA and K-means:
http://ranger.uta.edu/~chqding/papers/KmeansPCA1.pdf

http://ranger.uta.edu/~chqding/papers/Zha-Kmeans.pdf

http://ranger.uta.edu/~chqding/papers/KmeansPCA1.pdf
http://ranger.uta.edu/~chqding/papers/Zha-Kmeans.pdf

Web Mining and Recommender Systems

Community Detection: Introduction

Learning Goals

• Introduce community detection

• Explain how it is different from

clustering and other forms of

dimensionality reduction

Community detection versus clustering

So far we have seen methods

to reduce the dimension of

points based on their features

Community detection versus clustering

So far we have seen methods

to reduce the dimension of

points based on their features

What if points are not defined

by features but by their

relationships to each other?

Community detection versus clustering

Q: how can we compactly represent

the set of relationships in a graph?

Community detection versus clustering

A: by representing the nodes in terms

of the communities they belong to

Community detection

(from previous lecture)

communities

f = [0,0,0,1] (A,B,C,D)

e.g. from a PPI network; Yang, McAuley, & Leskovec (2014)

f = [0,0,1,1] (A,B,C,D)

Community detection versus clustering

Part 1 – Clustering

Group sets of points based on

their features

Part 2 – Community detection

Group sets of points based on

their connectivity

Warning: These are rough distinctions that don’t cover all cases. E.g. if

I treat a row of an adjacency matrix as a “feature” and run hierarchical

clustering on it, am I doing clustering or community detection?

Community detection

How should a “community” be defined?

• Similar behavior / interests?

• Geography?

• Mutual friends?

• Cliques / social groups?

• Frequency of interaction?

Common interests

Common bonds

Community detection

How should a “community” be defined?

1. Members should be connected

2. Few edges between communities

3. “Cliqueishness”

4. Dense inside, few edges outside

Coming up...

1. Connected components
(members should be connected)

2. Minimum cut
(few edges between communities)

3. Clique percolation
(“cliqueishness”)

4. Network modularity
(dense inside, few edges outside)

Web Mining and Recommender Systems

Community Detection: Graph Cuts

Learning Goals

• Introduce community detection

algorithms based on Graph Cuts

• (also introduce connected

components as a point of contrast)

1. Connected components

Define communities in terms of sets of

nodes which are reachable from each other

• If a and b belong to a strongly connected component then

there must be a path from a → b and a path from b → a

• A weakly connected component is a set of nodes that

would be strongly connected, if the graph were undirected

1. Connected components

• Captures about the roughest notion of

“community” that we could imagine

• Not useful for (most) real graphs:

there will usually be a “giant

component” containing almost all

nodes, which is not really a

community in any reasonable sense

2. Graph cuts

e.g. “Zachary’s Karate Club” (1970)

Picture from http://spaghetti-os.blogspot.com/2014/05/zacharys-karate-club.html

What if the separation between

communities isn’t so clear?

instructor

club president

http://spaghetti-os.blogspot.com/2014/05/zacharys-karate-club.html

2. Graph cuts

http://networkkarate.tumblr.com/

Aside: Zachary’s Karate Club Club

http://networkkarate.tumblr.com/

2. Graph cuts

Cut the network into two partitions

such that the number of edges

crossed by the cut is minimal

Solution will be degenerate – we need additional constraints

2. Graph cuts

We’d like a cut that favors large

communities over small ones

Proposed set of communities

#of edges that separate c from the rest of the network

size of this community

2. Graph cuts

What is the Ratio Cut cost of the

following two cuts?

2. Graph cuts

But what about…

2. Graph cuts

Maybe rather than counting all

nodes equally in a community, we

should give additional weight to

“influential”, or high-degree nodes

nodes of high degree will have more influence in the denominator

2. Graph cuts

What is the Normalized Cut cost of

the following two cuts?

2. Graph cuts

>>> Import networkx as nx

>>> G = nx.karate_club_graph()

>>> c1 = [1,2,3,4,5,6,7,8,11,12,13,14,17,18,20,22]

>>> c2 = [9,10,15,16,19,21,23,24,25,26,27,28,29,30,31,32,33,34]

>>> Sum([G.degree(v-1) for v in c1])

76

>>> sum([G.degree(v-1) for v in c2])

80

Nodes are indexed from 0 in the networkx dataset, 1 in the figure

Code:

2. Graph cuts

So what actually happened?

• = Optimal cut

• Red/blue = actual split

Normalized cuts in Computer Vision

“Normalized Cuts and Image Segmentation”

Shi and Malik, 1998

Learning Outcomes

• Introduced graph cuts-based

community detection algorithms

• Showed some of the challenges in

designing a community detection

algorithm based on this concept

• Discussed the history of the

community detection problem a little

Web Mining and Recommender Systems

Community Detection: Clique Percolation

Learning Goals

• Introduce the Clique Percolation

community detection algorithm

Disjoint communities

Graph data from Adamic (2004). Visualization from allthingsgraphed.com

Separating networks into disjoint

subsets seems to make sense when

communities are somehow “adversarial”

E.g. links between democratic/republican political blogs

(from Adamic, 2004)

Social communities

But what about communities in

social networks (for example)?

e.g. the graph of my facebook friends:

http://jmcauley.ucsd.edu/cse258/data/facebook/egonet.txt

http://jmcauley.ucsd.edu/cse258/data/facebook/egonet.txt

Social communities

Such graphs might have:

• Disjoint communities (i.e., groups of friends who don’t know each other)

e.g. my American friends and my Australian friends

• Overlapping communities (i.e., groups with some intersection)

e.g. my friends and my girlfriend’s friends

• Nested communities (i.e., one group within another)

e.g. my UCSD friends and my CSE friends

3. Clique percolation

How can we define an algorithm that

handles all three types of community

(disjoint/overlapping/nested)?

Clique percolation is one such

algorithm, that discovers communities

based on their “cliqueishness”

3. Clique percolation

1. Given a clique size K

2. Initialize every K-clique as its own community

3. While (two communities I and J have a (K-1)-clique in common):

4. Merge I and J into a single community

• Clique percolation searches for “cliques” in the

network of a certain size (K). Initially each of these

cliques is considered to be its own community

• If two communities share a (K-1) clique in

common, they are merged into a single community

• This process repeats until no more communities

can be merged

3. Clique percolation

Learning Outcomes

• Introduced Clique Percolation

• Discussed some of the underlying

assumptions made by different

community detection algorithms

Web Mining and Recommender Systems

Community Detection: Network Modularity

Learning Goals

• Introduce Network Modularity

What is a “good” community algorithm?

• So far we’ve just defined algorithms to match

some (hopefully reasonable) intuition of what

communities should “look like”

• But how do we know if one definition is better

than another? I.e., how do we evaluate a

community detection algorithm?

• Can we define a probabilistic model

and evaluate the likelihood of

observing a certain set of communities

compared to some null model

4. Network modularity

Null model:

Edges are equally likely between

any pair of nodes, regardless of

community structure

(“Erdos-Renyi random model”)

4. Network modularity

Null model:

Edges are equally likely between

any pair of nodes, regardless of

community structure

(“Erdos-Renyi random model”)

Q: How much does a proposed

set of communities deviate from

this null model?

4. Network modularity

4. Network modularity

Fraction of

edges in

community k

Fraction that we would

expect if edges were

allocated randomly

4. Network modularity

4. Network modularity

4. Network modularity

Far fewer edges in

communities than we would

expect at random

Far more edges in

communities than we would

expect at random

4. Network modularity

Algorithm: Choose communities so that the

deviation from the null model is maximized

That is, choose communities such that maximally

many edges are within communities and minimally

many edges cross them

(NP Hard, have to approximate, e.g. choose greedily)

Summary

• Community detection aims to summarize the

structure in networks
(as opposed to clustering which aims to summarize feature

dimensions)

• Communities can be defined in various ways,

depending on the type of network in question
1. Members should be connected (connected components)

2. Few edges between communities (minimum cut)

3. “Cliqueishness” (clique percolation)

4. Dense inside, few edges outside (network modularity)

Learning Outcomes

• Introduced network modularity

• Briefly summarized our discussion of

community detection

References

Further reading:
Just on modularity: http://www.cs.cmu.edu/~ckingsf/bioinfo-

lectures/modularity.pdf

Various community detection algorithms, includes spectral formulation

of ratio and normalized cuts:

http://dmml.asu.edu/cdm/slides/chapter3.pptx

http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/modularity.pdf
http://dmml.asu.edu/cdm/slides/chapter3.pptx

