
Web Mining and Recommender Systems

Classification (& Regression Recap)



Learning Goals

In this section we want to:
• Explore techniques for classification

• Try some simple solutions, and see why they 

might fail

• Explore more complex solutions, and their 

advantages and disadvantages

• Understand the relationship between 

classification and regression

• Examine how we can reliably 

evaluate classifiers under different conditions



Recap...

Previously we started looking at 

supervised learning problems



Recap...

matrix of features

(data) unknowns

(which features are relevant)

vector of outputs

(labels)

We studied linear regression, in order 

to learn linear relationships between 

features and parameters to predict real-

valued outputs



Recap...

ratings

features



Four important ideas:

1) Regression can be cast in terms of maximizing a likelihood



Four important ideas:

2) Gradient descent for model optimization

1. Initialize     at random

2. While (not converged) do



Four important ideas:

3) Regularization & Occam’s razor

Regularization is the process of 

penalizing model complexity during 

training

How much should we trade-off accuracy versus complexity?



Four important ideas:

4) Regularization pipeline

1. Training set – select model parameters

2. Validation set – to choose amongst models (i.e., hyperparameters)

3. Test set – just for testing!



Model selection

A validation set is constructed to 

“tune” the model’s parameters

• Training set: used to optimize the model’s 

parameters

• Test set: used to report how well we expect the 

model to perform on unseen data

• Validation set: used to tune any model 

parameters that are not directly optimized



Model selection

A few “theorems” about training, 

validation, and test sets

• The training error increases as lambda increases

• The validation and test error are at least as large as 

the training error (assuming infinitely large 

random partitions)

• The validation/test error will usually have a “sweet 

spot” between under- and over-fitting



Up next…

How can we predict binary or 

categorical variables?

{0,1}, {True, False}

{1, … , N}



Up next…

Will I purchase

this product?

(yes)

Will I click on

this ad?

(no)



Up next…

What animal appears in this image?

(mandarin duck)



Up next…

What are the categories of the item 

being described?

(book, fiction, philosophical fiction)



Up next…

We’ll attempt to build classifiers that 

make decisions according to rules of 

the form



Up later…

1. Naïve Bayes
Assumes an independence relationship between 

the features and the class label and “learns” a 

simple model by counting

2. Logistic regression
Adapts the regression approaches we saw last 

week to binary problems

3. Support Vector Machines
Learns to classify items by finding a hyperplane

that separates them



Up later…

Ranking results in order of how likely 

they are to be relevant



Up later…

Evaluating classifiers
• False positives are nuisances but false negatives are 

disastrous (or vice versa)

• Some classes are very rare

• When we only care about the “most confident” 

predictions

e.g. which of these bags contains a weapon?



Web Mining and Recommender Systems

Classification: Naïve Bayes



Learning Goals

• Introduce the Naïve Bayes classifier

• We study Naïve Bayes largely to learn 

about the complications involved in 

building classifiers



Naïve Bayes

We want to associate a probability with a 

label and its negation:

(classify according to whichever probability is greater than 0.5)

Q: How far can we get just by counting?



Naïve Bayes

e.g. p(movie is “action” | schwarzenegger in cast)

Just count!

#films with Arnold = 45

#action films with Arnold = 32

p(movie is “action” | schwarzenegger in cast) = 32/45



Naïve Bayes

What about:
p(movie is “action” | 

schwarzenegger in cast and

release year = 2017 and

mpaa rating = PG and

budget < $1000000

)

#(training) fims with Arnold, released in 2017, rated PG, with a 

budget below $1M = 0

#(training) action fims with Arnold, released in 2017, rated PG, 

with a budget below $1M = 0



Naïve Bayes

Q: If we’ve never seen this combination 

of features before, what can we 

conclude about their probability?

A: We need some simplifying 

assumption in order to associate a 

probability with this feature combination



Naïve Bayes

Naïve Bayes assumes that features are 

conditionally independent given the 

label



Naïve Bayes



Conditional independence?

(a is conditionally independent of b, given c)

“if you know c, then knowing 

a provides no additional 

information about b”



Naïve Bayes

=



Naïve Bayes

posterior prior likelihood

evidence



Naïve Bayes

posterior prior likelihood

evidence

due to our conditional independence assumption:



Naïve Bayes

?

The denominator doesn’t matter, because we really just care about

vs.

both of which have the same denominator



Naïve Bayes

The denominator doesn’t matter, because we really just care about

vs.

both of which have the same denominator



Learning Outcomes

• Introduced the Naïve Bayes classifier

• Discussed some of the challenges 

involved in classifier design



Web Mining and Recommender Systems

Naïve Bayes – Worked Example



Learning Goals

• Attempt to implement and 

experiment with a Naïve Bayes 

classifier



Example 1

Amazon editorial descriptions:

50k descriptions:
http://jmcauley.ucsd.edu/cse258/data/amazon/book_descriptions_50000.json

http://jmcauley.ucsd.edu/cse258/data/amazon/book_descriptions_50000.json


Example 1

P(book is a children’s book |

“wizard” is mentioned in the description and

“witch” is mentioned in the description)

Code available on course webpage



Example 1

“if you know a book is for children, then 

knowing that wizards are mentioned 

provides no additional information about 

whether witches are mentioned”

Conditional independence assumption:

obviously ridiculous



Double-counting

Q: What would happen if we trained two 

regressors, and attempted to “naively” 

combine their parameters?



Double-counting



Double-counting

A: Since both features encode 

essentially the same 

information, we’ll end up 

double-counting their effect



Learning Outcomes

• Implemented a simple Naïve Bayes 

classifier, and studied its effectivenes 

in practice



Web Mining and Recommender Systems

Classification: Logistic Regression



Learning Goals

• Introduce the logistic regression 

classifier

• Show how to design classifiers by 

maximizing a likelihood function



Logistic regression

Logistic Regression also aims 

to model

By training a classifier of the 

form



Logistic regression

Previously: regression

Now: logistic regression



Logistic regression

Q: How to convert a real-

valued expression (                )

Into a probability

(                           )



Logistic regression

A: sigmoid function:



Logistic regression

A: sigmoid function:

Classification 

boundary



Logistic regression

Training:

should be maximized 

when      is positive and 

minimized when      is 

negative



Logistic regression

Training:

should be maximized 

when      is positive and 

minimized when      is 

negative

= 1 if the argument is true, = 0 otherwise



Logistic regression

How to optimize?

• Take logarithm

• Subtract regularizer

• Compute gradient

• Solve using gradient ascent



Logistic regression



Logistic regression



Logistic regression

Log-likelihood:

Derivative:



Learning Outcomes

• Introduced the logistic regression 

classifier

• Further studied gradient descent 

(really ascent) here as a means of 

model fitting



References

Further reading:
• On Discriminative vs. Generative classifiers: A 

comparison of logistic regression and naïve 

Bayes (Ng & Jordan ‘01)

• Boyd-Fletcher-Goldfarb-Shanno algorithm 

(BFGS)



Web Mining and Recommender Systems

Classification: Support Vector Machines



Learning Goals

• Introduce the Support Vector 

Machine classifier

• Study some of the underlying 

tradeoffs made by different 

classification approaches



So far we've seen...

So far we've looked at logistic regression, 

which is a classification model of the form:

• In order to do so, we made certain modeling 

assumptions, but there are many different 

models that rely on different assumptions

• Next we’ll look at another such model



(Rough) Motivation: SVMs vs Logistic regression

positive 

examples

negative 

examples

a b

Q: Where would a logistic regressor place the 

decision boundary for these features?



SVMs vs Logistic regression

Q: Where would a logistic regressor place the 

decision boundary for these features?

b

positive 

examples

negative 

examples

easy to 

classify

easy to 

classify

hard to 

classify



SVMs vs Logistic regression

• Logistic regressors don’t optimize the 

number of “mistakes”

• No special attention is paid to the 

“difficult” instances – every instance 

influences the model

• But “easy” instances can affect the model 

(and in a bad way!)

• How can we develop a classifier that 

optimizes the number of mislabeled 

examples?



Support Vector Machines: Basic idea

A classifier can be defined by the hyperplane (line)



Support Vector Machines: Basic idea

Observation: Not all classifiers are equally good



Support Vector Machines

such that

“support 

vectors”

• An SVM seeks the classifier 

(in this case a line) that is 

furthest from the nearest 

points

• This can be written in terms 

of a specific optimization 

problem:



Support Vector Machines

But: is finding such a separating 

hyperplane even possible?



Support Vector Machines

Or: is it actually a good idea?



Support Vector Machines

Want the margin to be as wide as possible

While penalizing points on the wrong side of it



Support Vector Machines

such that

Soft-margin formulation:



Summary of Support Vector Machines

• SVMs seek to find a hyperplane (in two 

dimensions, a line) that optimally separates two 

classes of points

• The “best” classifier is the one that classifies all 

points correctly, such that the nearest points are 

as far as possible from the boundary

• If not all points can be correctly classified, a 

penalty is incurred that is proportional to how 

badly the points are misclassified (i.e., their 

distance from this hyperplane)



Learning Outcomes

• Introduced a different type of 

classifier that seeks to minimize the 

number of mistakes made more 

directly



Web Mining and Recommender Systems

Classification – Worked example



Learning Goals

• Work through a simple example of 

classification

• Introduce some of the difficulties in 

evaluating classifiers



Judging a book by its cover

[0.723845, 0.153926, 0.757238, 0.983643, … ]

4096-dimensional image features

Images features are available for each book on
http://cseweb.ucsd.edu/classes/fa19/cse258-a/data/book_images_5000.json

http://caffe.berkeleyvision.org/

http://cseweb.ucsd.edu/classes/fa19/cse258-a/data/book_images_5000.json


Judging a book by its cover

Example: train a classifier to 

predict whether a book is a 

children’s book from its cover 

art

(code available on course webpage)



Judging a book by its cover

• The number of errors we 

made was extremely low, yet 

our classifier doesn’t seem to 

be very good – why?

(stay tuned!)



Web Mining and Recommender Systems

Classifiers: Summary



Learning Goals

• Summarize some of the differences 

between each of the classification 

schemes we have seen



Previously…

How can we predict binary or 

categorical variables?

{0,1}, {True, False}

{1, … , N}



Previously…

Will I purchase

this product?

(yes)

Will I click on

this ad?

(no)



Previously…

• Naïve Bayes
• Probabilistic model (fits                     )

• Makes a conditional independence assumption of 

the form                                           allowing us to 

define the model by computing                           

for each feature

• Simple to compute just by counting

• Logistic Regression
• Fixes the “double counting” problem present in 

naïve Bayes

• SVMs
• Non-probabilistic: optimizes the classification 

error rather than the likelihood



1) Naïve Bayes

posterior prior likelihood

evidence

due to our conditional independence assumption:



2) logistic regression

sigmoid function:

Classification 

boundary



Logistic regression

Q: Where would a logistic regressor place the 

decision boundary for these features?

a b

positive 

examples

negative 

examples



Logistic regression

Q: Where would a logistic regressor place the 

decision boundary for these features?

b

positive 

examples

negative 

examples

easy to 

classify
easy to 

classify

hard to 

classify



Logistic regression

• Logistic regressors don’t optimize the 

number of “mistakes”

• No special attention is paid to the “difficult” 

instances – every instance influences the 

model

• But “easy” instances can affect the model 

(and in a bad way!)

• How can we develop a classifier that 

optimizes the number of mislabeled 

examples?



3) Support Vector Machines

Want the margin to be as wide as possible

While penalizing points on the wrong side of it

Can we train a classifier that optimizes the number 

of mistakes, rather than maximizing a probability?



Pros/cons

• Naïve Bayes
++ Easiest to implement, most efficient to “train”

++ If we have a process that generates feature that are

independent given the label, it’s a very sensible idea

-- Otherwise it suffers from a “double-counting” issue

• Logistic Regression
++ Fixes the “double counting” problem present in 

naïve Bayes

-- More expensive to train

• SVMs
++ Non-probabilistic: optimizes the classification error 

rather than the likelihood

-- More expensive to train



Summary

• Naïve Bayes
• Probabilistic model (fits                     )

• Makes a conditional independence assumption of 

the form                                           allowing us to 

define the model by computing                           

for each feature

• Simple to compute just by counting

• Logistic Regression
• Fixes the “double counting” problem present in 

naïve Bayes

• SVMs
• Non-probabilistic: optimizes the classification 

error rather than the likelihood



Web Mining and Recommender Systems

Evaluating classifiers



Learning Goals

• Discuss several schemes for 

evaluating classifiers under different 

conditions



Which of these classifiers is best?

a b



Which of these classifiers is best?

The solution which minimizes the 

#errors may not be the best one



Which of these classifiers is best?

1. When data are highly imbalanced
If there are far fewer positive examples than negative 

examples we may want to assign additional weight to 

negative instances (or vice versa)

e.g. will I purchase a 

product? If I 

purchase 0.00001% 

of products, then a 

classifier which just 

predicts “no” 

everywhere is 

99.99999% accurate, 

but not very useful



Which of these classifiers is best?

2. When mistakes are more costly in 

one direction
False positives are nuisances but false negatives are 

disastrous (or vice versa)

e.g. which of these bags contains a weapon?



Which of these classifiers is best?

3. When we only care about the 

“most confident” predictions

e.g. does a relevant 

result appear 

among the first 

page of results?



Evaluating classifiers

decision boundary

positivenegative



Evaluating classifiers

decision boundary

positivenegative

TP (true positive): Labeled as positive, predicted as positive



Evaluating classifiers

decision boundary

positivenegative

TN (true negative): Labeled as negative, predicted as negative



Evaluating classifiers

decision boundary

positivenegative

FP (false positive): Labeled as negative, predicted as positive



Evaluating classifiers

decision boundary

positivenegative

FN (false negative): Labeled as positive, predicted as negative



Evaluating classifiers

Label

true false

Prediction

true

false

true 

positive

false 

positive

false 

negative

true 

negative

Classification accuracy = correct predictions / #predictions

=

Error rate = incorrect predictions / #predictions

=



Evaluating classifiers

Label

true false

Prediction

true

false

true 

positive

false 

positive

false 

negative

true 

negative

True positive rate (TPR) = true positives / #labeled positive

=

True negative rate (TNR) = true negatives / #labeled negative

=



Evaluating classifiers

Label

true false

Prediction

true

false

true 

positive

false 

positive

false 

negative

true 

negative

Balanced Error Rate (BER) = ½ (FPR + FNR)

= ½ for a random/naïve classifier, 0 for a perfect classifier



Evaluating classifiers
e.g.

y = [  1,  -1,   1,   1,  1, -1,  1,  1,  -1,  1]

Confidence = [1.3,-0.2,-0.1,-0.4,1.4,0.1,0.8,0.6,-0.8,1.0]



Evaluating classifiers

How to optimize a balanced error measure:



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction
decision boundary

positivenegative

furthest from decision 

boundary in negative direction 

= lowest score/least confident

furthest from decision 

boundary in positive direction 

= highest score/most confident



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

• In ranking settings, the actual labels assigned to the 

points (i.e., which side of the decision boundary they 

lie on) don’t matter

• All that matters is that positively labeled points tend 

to be at higher ranks than negative ones



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

• For naïve Bayes, the “score” is the ratio between an 

item having a positive or negative class

• For logistic regression, the “score” is just the 

probability associated with the label being 1

• For Support Vector Machines, the score is the 

distance of the item from the decision boundary 

(together with the sign indicating what side it’s on)



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

Sort both according to confidence:

e.g.
y = [  1,  -1,   1,   1,  1, -1,  1,  1,  -1,  1]

Confidence = [1.3,-0.2,-0.1,-0.4,1.4,0.1,0.8,0.6,-0.8,1.0]



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

[1, 1, 1, 1, 1, -1, 1, -1, 1, -1]

Labels sorted by confidence:

Suppose we have a fixed budget (say, six) of items that we can return

(e.g. we have space for six results in an interface)

• Total number of relevant items = 

• Number of items we returned = 

• Number of relevant items we returned = 



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

“fraction of retrieved documents that are relevant”

“fraction of relevant documents that were retrieved”



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

= precision when we have a budget 

of k retrieved documents

e.g.

• Total number of relevant items = 7

• Number of items we returned = 6

• Number of relevant items we returned = 5

precision@6 = 



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

(harmonic mean of precision and recall)

(weighted, in case precision is more important 

(low beta), or recall is more important (high beta))



Precision/recall curves

How does our classifier behave as we 

“increase the budget” of the number 

retrieved items?

• For budgets of size 1 to N, compute the precision and recall

• Plot the precision against the recall

recall

p
re

ci
si

o
n



Summary

1. When data are highly imbalanced
If there are far fewer positive examples than negative 

examples we may want to assign additional weight to 

negative instances (or vice versa)

e.g. will I purchase a 

product? If I 

purchase 0.00001% 

of products, then a 

classifier which just 

predicts “no” 

everywhere is 

99.99999% accurate, 

but not very useful

Compute the true positive rate 

and true negative rate, and the 

F_1 score



Summary

2. When mistakes are more costly in 

one direction
False positives are nuisances but false negatives are 

disastrous (or vice versa)

e.g. which of these bags contains a weapon?

Compute “weighted” error 

measures that trade-off the 

precision and the recall, like the 

F_\beta score



Summary

3. When we only care about the 

“most confident” predictions

e.g. does a relevant 

result appear 

among the first 

page of results?

Compute the precision@k, and 

plot the signature of precision 

versus recall



Learning Outcomes

• Saw several examples of classification 

evaluation measures

• Introduced the F-score, precision and 

recall, and Balanced Error Rate 

(among others)



Web Mining and Recommender Systems

Classifier Evaluation: Worked Example



Learning Goals

• Implement the evaluation metrics 

from the previous section on real data



Code example: bankruptcy data

@relation '5year-weka.filters.unsupervised.instance.SubsetByExpression-Enot ismissing(ATT20)'

@attribute Attr1 numeric

@attribute Attr2 numeric

...

@attribute Attr63 numeric

@attribute Attr64 numeric

@attribute class {0,1}

@data

0.088238,0.55472,0.01134,1.0205,-

66.52,0.34204,0.10949,0.57752,1.0881,0.32036,0.10949,0.1976,0.096885,0.10949,1475.2,0.24742,1.8027,0.10949,0.077287,50.199,

1.1574,0.13523,0.062287,0.41949,0.32036,0.20912,1.0387,0.026093,6.1267,0.37788,0.077287,155.33,2.3498,0.24377,0.13523,1.449

3,571.37,0.32101,0.095457,0.12879,0.11189,0.095457,127.3,77.096,0.45289,0.66883,54.621,0.10746,0.075859,1.0193,0.55407,0.42

557,0.73717,0.73866,15182,0.080955,0.27543,0.91905,0.002024,7.2711,4.7343,142.76,2.5568,3.2597,0

Did the company go bankrupt?

We'll look at a simple dataset from the UCI repository:​

https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data

Code on course webpage

http://s+bankruptcy+data/


Web Mining and Recommender Systems

Supervised Learning: Summary so far



Learning Goals

• Summarize our discussion of 

supervised learning



So far: Regression

How can we use features such as product properties and 

user demographics to make predictions about real-valued

outcomes (e.g. star ratings)?

How can we 

prevent our 

models from 

overfitting by 

favouring simpler 

models over more 

complex ones?

How can we 

assess our 

decision to 

optimize a 

particular error 

measure, like the 

MSE?



So far: Classification

Next we 

adapted 

these ideas 

to binary or 

multiclass

outputs
What animal is 

in this image?

Will I purchase

this product?

Will I click on

this ad?

Combining features 

using naïve Bayes models Logistic regression Support vector machines



So far: supervised learning

Given labeled training data of the form

Infer the function



So far: supervised learning

We’ve looked at two types of 

prediction algorithms:

Regression

Classification



Further Reading

Further reading:
• “Cheat sheet” of performance evaluation measures: 

http://www.damienfrancois.be/blog/files/modelperfcheatsheet.pdf

• Andrew Zisserman’s SVM slides, focused on 

computer vision:
http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf


