
Web Mining and Recommender Systems

Algorithms for advertising



Learning Goals

• Introduce the topic of algorithmic 

advertising



Classification

Will I click on

this ad?

Predicting which ads people click on might be a classification 

problem



Recommendation

my (user’s)

“preferences”
HP’s (item) 

“properties”
preference

Toward

“action”

preference toward

“special effects”

is the movie 

action-

heavy?

are the special effects good?

Compatibility

Or… predicting which ads people click on might be a 

recommendation problem



Advertising

So, we already have good algorithms for 

predicting whether a person would click 

on an ad, and generally for 

recommending items that people will 

enjoy.

So what’s different about ad 

recommendation?



Advertising

1. We can’t recommend everybody the 

same thing (even if they all want it!)

• Advertisers have a limited budget – they wouldn’t be able to 

afford having their content recommended to everyone

• Advertisers place bids – we must take their bid into account 

(as well as the user’s preferences – or not)

• In other words, we need to consider both what the user and 

the advertiser want (this is in contrast to recommender 

systems, where the content didn’t get a say about whether it 

was recommended!)



Advertising

2.  We need to be timely

• We want to make a personalized recommendations 

immediately (e.g. the moment a user clicks on an ad) – this 

means that we can’t train complicated algorithms (like what 

we saw with recommender systems) in order to make 

recommendations later

• We also want to update users’ models immediately in 

response to their actions

• (Also true for some recommender systems)



Advertising

3.  We need to take context into account

• Is the page a user is currently visiting particularly relevant to 

a particular type of content?

• Even if we have a good model of the user, recommending 

them the same type of thing over and over again is unlikely 

to succeed – nor does it teach us anything new about the 

user

• In other words, there’s an explore-exploit tradeoff – we want 

to recommend things a user will enjoy (exploit), but also to 

discover new interests that the user may have (explore)



Advertising

So, ultimately we need
1) Algorithms to match users and ads, given budget 

constraints

users advertisers

(each advertiser 

gets one user)

.92
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.58

bid / quality of the 

recommendation



Advertising

So, ultimately we need
2) Algorithms that work in real-time and don’t depend on 

monolithic optimization problems

users advertisers

(each advertiser 

gets one user)

.92

users arrive one at 

a time (but we still 

only get one ad 

per advertiser) –

how to generate a 

good solution?



Advertising

So, ultimately we need
3) Algorithms that adapt to users and capture the notion of an 

exploit/explore tradeoff



Web Mining and Recommender Systems

Advertising: Matching problems



Learning Goals

• Introduce matching algorithms

• Explain the key differences between 

ad recommendation and other types 

of recommendation



Let’s start with…

1. We can’t recommend everybody the 

same thing (even if they all want it!)

• Advertisers have a limited budget – they wouldn’t be able to 

afford having their content recommended to everyone

• Advertisers place bids – we must take their bid into account 

(as well as the user’s preferences – or not)

• In other words, we need to consider both what the user and 

the advertiser want (this is in contrast to recommender 

systems, where the content didn’t get a say about whether it 

was recommended!)



Bipartite matching

Let’s start with a simple version of the 

problem we ultimately want to solve:

1) Every advertiser wants to show one ad

2) Every user gets to see one ad

3) We have some pre-existing model that 

assigns a score to user-item pairs



Bipartite matching

Suppose we’re given some scoring function:

Could be:

• How much the owner of a is willing to pay to show their ad to u

• How much we expect the user u to spend if they click the ad a

• Probability that user u will click the ad a

Output of a regressor / logistic regressor!



Bipartite matching

Then, we’d like to show each user one ad, and we’d like each ad 

to be shown exactly once so as to maximize this score (bids, 

expected profit, probability of clicking etc.)

s.t.

each advertiser gets to show one ad



Bipartite matching

Then, we’d like to show each user one ad, and we’d like each ad 

to be shown exactly once so as to maximize this score (bids, 

expected profit, probability of clicking etc.)

s.t.

each advertiser gets to show one ad



Bipartite matching

users ads

(each advertiser 

gets one user)

We can set this up as a bipartite matching problem

• Construct a complete bipartite graph between users and ads, 

where each edge is weighted according to f(u,a)

• Choose edges such that each node is connected to exactly 

one edge

.75

.24

.67

.97

.59

.92

.58



Bipartite matching

men women

(each user of an 

online dating 

platform gets 

shown exactly one 

result)

.75

.24

.67

.97

.59

.92

.58

This is similar to the problem solved by (e.g.) online dating sites 

to match men to women

For this reason it is called a marriage problem



Bipartite matching

This is similar to the problem solved by (e.g.) online dating sites 

to match men to women

For this reason it is called a marriage problem

• A group of men should marry an (equally sized) group of 

women such that happiness is maximized, where “happiness” 

is measured by f(m,w)

• Marriages are monogamous, heterosexual, and everyone gets 

married

(see also the original formulation, in which men have a preference function over 

women, and women have a different preference function over men)

compatibility between male m and female w



Bipartite matching

We’ll see one solution to this problem, 

known as stable marriage

• Maximizing happiness turns out to be quite hard

• But, a solution is “unstable” if:

m w’

w

m’
• A man m is matched to a woman w’ but 

would prefer w (i.e., f(m,w’) < f(m,w))

and

• The feeling is mutual – w prefers m to 

her partner (i.e., f(w,m’) < f(m,w))

• In other words, m and w would both 

want to “cheat” with each other



Bipartite matching

We’ll see one solution to this problem, 

known as stable marriage

• A solution is said to be stable if this is never satisfied for any 

pair (m,w)

m w’

w

m’
• Some people may covet another 

partner,

but

• The feeling is never reciprocated by the 

other person

• So no pair of people would mutually

want to cheat



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• Men propose to women (this algorithm is from 1962!)

• While there is a man m who is not engaged

• He selects his most compatible partner,                              

(to whom he has not already proposed)

• If she is not engaged, they become engaged

• If she is engaged (to m’), but prefers m, she breaks things 

off with m’ and becomes engaged to m instead



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

All men and all women are initially ‘free’ (i.e., not engaged)

while there is a free man m, and a woman he has not proposed to

w = max_w f(m,w)

if (w is free):

(m,w) become engaged (and are no longer free)

else (w is engaged to m’):

if w prefers m to m’ (i.e., f(m,w) > f(m’,w)):

(m,w) become engaged

m’ becomes free



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The algorithm terminates



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The algorithm terminates

(either the number of free people decreases at each step, or, if it 

stays the same, the happiness increases)



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is stable



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is stable

(suppose m and w prefer each other to their current partners, w’ 

and m’

But m would have proposed to w before he proposed to w’

- if w rejected his proposal, she must have been with someone 

she liked better

- if w accepted his proposal (but dumped him later), it must 

also have been for someone she likes better)



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is O(n^2)



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is O(n^2)

(every proposal is made at most once, and there are O(n^2) 

proposals

The input is O(n^2) (i.e., the compatibility function) so it 

certainly couldn’t be better than O(n^2))



Bipartite matching – extensions/improvements

Can all of this be improved upon?

1) It’s not optimal



Bipartite matching – extensions/improvements

Can all of this be improved upon?

1) It’s not optimal

• Although there’s no pair of individuals who would be happier 

by cheating, there could be groups of men and women who 

would be ultimately happier if the graph were rewired

• To get a truly optimal solution, there’s a more complicated 

algorithm, known as the “Hungarian Algorithm”

• But it’s O(n^3)

• And really complicated and unintuitive (but there’s a ref later)



Bipartite matching – extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous, 

heterosexual, and everyone gets married

• Each advertiser may have a fixed 

budget of (1 or more) ads

• We may have room to show more than 

one ad to each customer

• See “Stable marriage with multiple 

partners: efficient search for an optimal 

solution” (refs)

(each user 

gets shown 

two ads, each 

ad gets 

shown to two 

users)



Bipartite matching – extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous, 

heterosexual, and everyone gets married
• This version of the problem is 

know as graph cover (select 

edges such that each node is 

connected to exactly one edge)

• The algorithm we saw is really just

graph cover for a bipartite graph

• Can be solved via the “stable 

roommates” algorithm (see refs) 

and extended in the same ways



Bipartite matching – extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous, 

heterosexual, and everyone gets married

• This version of the problem can 

address a very different variety of 

applications compared to the 

bipartite version

• Roommate matching

• Finding chat partners

• (or any sort of person-to-person 

matching)



Bipartite matching – extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous, 

heterosexual, and everyone gets married

• Easy enough just to create “dummy 

nodes” that represent no matchusers ads

no ad is shown to the corresponding user



Bipartite matching – applications

Why are matching problems so important?

• Advertising

• Recommendation

• Roommate assignments

• Assigning students to classes

• General resource allocation problems

• Transportation problems (see “Methods of Finding the 

Minimal Kilometrage in Cargo-transportation in space”)

• Hospitals/residents



Bipartite matching – applications

Why are matching problems so important?

• Point pattern matching



Bipartite matching – extensions/improvements

What about more complicated rules?

• (e.g. for hospital residencies) Suppose we want to keep 

couples together

• Then we would need a more complicated function that 

encodes these pairwise relationships:

pair of residents hospitals to which they’re assigned



So far…

Surfacing ads to users is a like a little like 

building a recommender system for ads

• We need to model the compatibility between each user and each 

ad (probability of clicking, expected return, etc.)

• But, we can’t recommend the same ad to every user, so we have to 

handle “budgets” (both how many ads can be shown to each user 

and how many impressions the advertiser can afford)

• So, we can cast the problem as one of “covering” a bipartite graph

• Such bipartite matching formulations can be adapted to a wide 

variety of tasks



Learning Outcomes

• Introduced algorithms for matching

• Explained how ad recommendation 

problems have constraints not 

present in other forms of 

recommendation



Questions?

Further reading:

• The original stable marriage paper
“College Admissions and the Stability of Marriage” (Gale, D.; Shapley, L. S., 1962):

https://www.jstor.org/stable/2312726

• The Hungarian algorithm
“The Hungarian Method for the assignment problem” (Kuhn, 1955):

https://tom.host.cs.st-andrews.ac.uk/CS3052-CC/Practicals/Kuhn.pdf

• Multiple partners
“Stable marriage with multiple partners: efficient search for an optimal solution” (Bansal et 

al., 2003)

• Graph cover & stable roommates
“An efficient algorithm for the ‘stable roommates’ problem” (Irving, 1985)

https://dx.doi.org/10.1016%2F0196-6774%2885%2990033-1

https://www.jstor.org/stable/2312726
https://tom.host.cs.st-andrews.ac.uk/CS3052-CC/Practicals/Kuhn.pdf
https://dx.doi.org/10.1016/0196-6774(85)90033-1


Web Mining and Recommender Systems

AdWords



Learning Goals

• Introduce the AdWords algorithm

• Explain the need to make ad 

recommendations in "real time"



Advertising

1. We can’t recommend everybody the 

same thing (even if they all want it!)

• So far, we have an algorithm that takes “budgets” into 

account, so that users are shown a limited number of ads, 

and ads are shown to a limited number of users

• But, all of this only applies if we see all the users and all the 

ads in advance

• This is what’s called an offline algorithm



Advertising

2.  We need to be timely

• But in many settings, users/queries come in one at a time, 

and need to be shown some (highly compatible) ads

• But we still want to satisfy the same quality and budget 

constraints

• So, we need online algorithms for ad recommendation



What is adwords?

Adwords allows advertisers to bid on 

keywords

• This is similar to our matching setting in that advertisers have 

limited budgets, and we have limited space to show ads

image from blog.adstage.io



What is adwords?

Adwords allows advertisers to bid on 

keywords

• This is similar to our matching setting in that advertisers have 

limited budgets, and we have limited space to show ads

• But, it has a number of key differences:

1. Advertisers don’t pay for impressions, but rather they pay 

when their ads get clicked on

2. We don’t get to see all of the queries (keywords) in advance –

they come one-at-a-time



What is adwords?

Adwords allows advertisers to bid on 

keywords

keywords

ads/advertisers

• We still want to match 

advertisers to keywords to 

satisfy budget constraints

• But can’t treat it as a 

monolithic optimization 

problem like we did before

• Rather, we need an online 

algorithm



What is adwords?

Suppose we’re given

• Bids that each advertiser is willing to make for each query

(this is how much they’ll pay if the ad is clicked on)

• Each is associated with a click-through rate

• Budget for each advertiser         (say for a 1-week period)

• A limit on how many ads can be returned for each query

query advertiser



What is adwords?

And, every time we see a query

• Return at most the number of ads that can fit on a page

• And which won’t overrun the budget of the advertiser

(if the ad is clicked on)

Ultimately, what we want is an algorithm 

that maximizes revenue – the number of 

ads that are clicked on, multiplied by the 

bids on those ads



Competitiveness ratio

What we’d like is:

the revenue should be as close as possible to what we 

would have obtained if we’d seen the whole problem up 

front

(i.e., if we didn’t have to solve it online)

We’ll define the competitive ratio as:

see http://infolab.stanford.edu/~ullman/mmds/book.pdf for more detailed definition

http://infolab.stanford.edu/~ullman/mmds/book.pdf


Greedy solution

Let’s start with a simple version of the 

problem…

1. One ad per query

2. Every advertiser has the same budget

3. Every ad has the same click through rate

4. All bids are either 0 or 1

(either the advertiser wants the query, or they don’t)



Greedy solution

Then the greedy solution is…

• Every time a new query comes in, select any advertiser who 

has bid on that query (who has budget remaining)

• What is the competitive ratio of this algorithm?



Greedy solution



The balance algorithm

A better algorithm…

• Every time a new query comes in, amongst advertisers who 

have bid on this query, select the one with the largest 

remaining budget

• How would this do on the same sequence?



The balance algorithm

see http://infolab.stanford.edu/~ullman/mmds/book.pdf for proof

A better algorithm…

• Every time a new query comes in, amongst advertisers who 

have bid on this query, select the one with the largest 

remaining budget

• In fact, the competitive ratio of this algorithm (still with 

equal budgets and fixed bids) is (1 – 1/e) ~ 0.63

http://infolab.stanford.edu/~ullman/mmds/book.pdf


The balance algorithm

What if bids aren’t equal?

Bidder Bid (on q) Budget

A 1 110

B 10 100



The balance algorithm

What if bids aren’t equal?

Bidder Bid (on q) Budget

A

B



The balance algorithm v2

We need to make two modifications

• We need to consider the bid amount when selecting the 

advertiser, and bias our selection toward higher bids

• We also want to use some of each advertiser’s budget

(so that we don’t just ignore advertisers whose budget is small)



The balance algorithm v2

Advertiser:

fraction of budget remaining: 

bid on query q:

Assign queries to whichever advertiser maximizes:

(could multiply by click-

through rate if click-

through rates are not equal)



The balance algorithm v2

Properties

• This algorithm has a competitive ratio of             . 

• In fact, there is no online algorithm for the adwords

problem with a competitive ratio better than   .

(proof is too deep for me…)



Adwords

So far we have seen…

• An online algorithm to match advertisers to users (really to 

queries) that handles both bids and budgets

• We wanted our online algorithm to be as good as the 

offline algorithm would be – we measured this using the 

competitive ratio

• Using a specific scheme that favored high bids while trying 

to balance the budgets of all advertisers, we achieved a ratio 

of             .

• And no better online algorithm exists!



Adwords

We haven’t seen…

• AdWords actually uses a second-price auction

(the winning advertiser pays the amount that the second

highest bidder bid)

• Advertisers don’t bid on specific queries, but inexact matches 

(‘broad matching’) – i.e., queries that include subsets, 

supersets, or synonyms of the keywords being bid on



Learning Outcomes

• Introduced the AdWords algorithm

• Showed how to greedily recommend 

ads in real time

• Discussed theoretical properties of 

this solution



Questions?

Further reading:

• Mining of Massive Datasets – “The Adwords Problem”

http://infolab.stanford.edu/~ullman/mmds/book.pdf

• AdWords and Generalized On-line Matching (A. Mehta)

http://web.stanford.edu/~saberi/adwords.pdf

http://infolab.stanford.edu/~ullman/mmds/book.pdf
http://web.stanford.edu/~saberi/adwords.pdf


Web Mining and Recommender Systems

Bandit algorithms



Learning Goals

• Introduce Bandit algorithms

• Discuss the notion of 

exploration/exploitation tradeoffs for 

ad recommendation

• Discuss how to incorporate learning 

into an ad recommendation 

algorithm



So far…

1. We’ve seen algorithms to handle 

budgets between users (or queries) 

and advertisers

2. We’ve seen an online version of these 

algorithms, where queries show up 

one at a time

3. Next, how can we learn about which 

ads the user is likely to click on in the 

first place?



Bandit algorithms

3. How can we learn about which ads the 

user is likely to click on in the first place?

• If we see the user click on a car ad once, we know that 

(maybe) they have an interest in cars

• So… we know they like car ads, should we keep 

recommending them car ads?

• No, they’ll become less and less likely to click it, and in the 

meantime we won’t learn anything new about what else the 

user might like



Bandit algorithms

• Sometimes we should surface car ads (which we 

know the user likes),

• but sometimes, we should be willing to take a 

risk, so as to learn what else the user might like

one-armed 

bandit



Setup

. . .
K bandits (i.e., K arms)
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reward

• At each round t, we select 

an arm to pull

• We’d like to pull the arm to 

maximize our total reward



Setup

. . .
K bandits (i.e., K arms)
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• At each round t, we select 

an arm to pull

• We’d like to pull the arm to 

maximize our total reward

• But – we don’t get to see 

the reward function!

reward



Setup

. . .
K bandits (i.e., K arms)
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• At each round t, we select 

an arm to pull

• We’d like to pull the arm to 

maximize our total reward

• But – we don’t get to see 

the reward function!

• All we get to see is the 

reward we got for the arm 

we picked at each round

reward



Setup

: number of arms (ads)

: number of rounds

: rewards

: which arm we pick at each round

: how much (0 or 1) this choice wins us

want to minimize regret:

reward our strategy would 

get (in expectation)

reward we could have got, if 

we had played optimally



Goal

• We need to come up with a 

strategy for selecting arms to 

pull (ads to show) that would 

maximize our expected reward

• For the moment, we’re assuming 

that rewards are static, i.e., that 

they don’t change over time



Strategy 1 – “epsilon first”

• Pull arms at random for a while to learn the 

distribution, then just pick the best arm

• (show random ads for a while until we learn 

the user’s preferences, then just show what 

we know they like)

: Number of steps to choose optimally

Math 

: Number of steps to sample randomly



Strategy 1 – “epsilon first”

• Pull arms at random for a while to learn the 

distribution, then just pick the best arm

• (show random ads for a while until we learn 

the user’s preferences, then just show what 

we know they like)

Math 



Strategy 2 – “epsilon greedy”

• Select the best lever most of the time, pull a 

random lever some of the time

• (show random ads sometimes, and the best 

ad most of the time)

• Empirically, worse than epsilon-first

• Still doesn’t handle context/time

: Fraction of times to choose optimallyMath 

: Fraction of times to sample randomly



Strategy 3 – “epsilon decreasing”

• Same as epsilon-greedy (Strategy 2), but 

epsilon decreases over time

Math 



Strategy 4 – “Adaptive epsilon greedy”

• Similar to as epsilon-decreasing (Strategy 3), 

but epsilon can increase and decrease over 

time

Math 



Extensions

• The reward function may not be static, i.e., it may change 

each round according to some process

• It could be chosen by an adversary

• The reward may not be [0,1] (e.g. clicked/not clicked), but 

instead a could be a real number (e.g. revenue), and we’d 

want to estimate the distribution over rewards



Extensions – Contextual Bandits

• There could be context associated with each time step

• The query the user typed

• What the user saw during the previous time step

• What other actions the user has recently performed

• Etc.



Applications (besides advertising)

• Clinical trials
(assign drugs to patients, given uncertainty about the 

outcome of each drug)

• Resource allocation
(assign person-power to projects, given uncertainty about 

the reward that different projects will result in)

• Portfolio design
(invest in ventures, given uncertainty about which will 

succeed)

• Adaptive network routing
(route packets, without knowing the delay unless you send 

the packet)



Learning Outcomes

• Introduced Bandit algorithms

• Discussed the notion of 

exploration/exploitation tradeoffs for 

ad recommendation

• Saw some settings beyond 

advertising where this notion could 

be useful



References

Further reading:
Tutorial on Bandits:

https://sites.google.com/site/banditstutorial/

https://sites.google.com/site/banditstutorial/


Web Mining and Recommender Systems

Case study – Turning down the noise



Turning down the noise

“Turning down the noise in the 

Blogosphere”
(By Khalid El-Arini, Gaurav Veda, Dafna Shahaf, Carlos Guestrin)

Goals:

1. Help to filter huge amounts of content, so that users see 

content that is relevant – rather than seeing popular 

content over and over again

2. Maximize coverage so that a variety of different content is 

recommended

3. Make recommendations that are personalized to each user

some slides http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-shahaf-guestrin.pptx



Turning down the noise

“Turning down the noise in the 

Blogosphere”
(By Khalid El-Arini, Gaurav Veda, Dafna Shahaf, Carlos Guestrin)

Goals:

1. Help to filter huge amounts of content, so that users see 

content that is relevant – rather than seeing popular 

content over and over again

2. Maximize coverage so that a variety of different content is 

recommended

3. Make recommendations that are personalized to each user

Similar to our goals with bandit 

algorithms

• Exploit by recommending 

content that we user is likely to 

enjoy (personalization)

• Explore by recommending a 

variety of content (coverage)



Turning down the noise

1. Help to filter huge amounts of content, 

so that users see content that is relevant

from http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-shahaf-guestrin.pptx



Turning down the noise

2. Maximize coverage so that a variety of 

different content is recommended



Turning down the noise

3. Make recommendations that are 

personalized to each user



1. Data and problem setting

• Data: Blogs (“the blogosphere”)

• Comparison: other systems that aggregate blog data



1. Data and problem setting

• Low-level features:

Bags-of-words, noun phrases, named entities

• High-level features:

Low-dimensional document representations, topic 

models



2. Maximize coverage

…Features

Posts …

cover     (   ) = amount by which { ,   } covers

Set A Feature fcoverA(f)

• We’d like to choose a (small) set of 

documents that maximally cover the set of 

features the user is interested in (later)



2. Maximize coverage

…Features

Posts …

feature

set

feature

importance

coverage of 

feature by A

• Can be done (approximately) by selecting documents 

greedily (with an approximation ratio of (1 – 1/e)



2. Maximize coverage

Works pretty well!

(and there are some 

comparisons to existing blog 

aggregators in the paper)

But – no personalization



3. Personalize

feature

set

personalized

feature

importance

coverage of 

feature by A

• Need to learn weights for each user based on their 

feedback (e.g. click/not-click) on each post



3. Personalize

feature

set

personalized

feature

importance

coverage of 

feature by A

• Need to learn weights for each user based on their 

feedback (e.g. click/not-click) on each post

• A click (or thumbs-up) on a post increases        for 

the features f associated with the post

• Not clicking (or thumbs-down) decreases for the 

features f associated with the post



3. Personalize

day 1 day 2 day 3

feedback 

on articles 

suggested

weighted 

interest in 

topic



Summary

• Want an algorithm that covers the set 

of topics that each user wants to see

• Articles can be chosen greedily, while 

still covering the topics nearly optimally

• The topics to cover can also be 

personalized to each user, by updating 

their preferences in response to user 

feedback

• Evaluated on real blog data (see paper!)



Recently...

We’ve looked at three features to handle 

the properties unique to online 

advertising
1. We need to handle budgets at the level of users and 

content (Matching problems)

2. We need algorithms that can operate online (i.e., as 

users arrive one-at-a-time) (AdSense)

3. We need to algorithms that exhibit an explore-exploit 

tradeoff (Bandit algorithms)



Questions?

Further reading:

• Turning down the noise in the blogosphere

(by Khalid El-Arini, Gaurav Veda, Dafna Shahaf, Carlos 

Guestrin)
http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-

shahaf-guestrin.pptx

http://www.cs.cmu.edu/~dshahaf/kdd2009-elarini-veda-shahaf-guestrin.pdf

http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-shahaf-guestrin.pptx
http://www.cs.cmu.edu/~dshahaf/kdd2009-elarini-veda-shahaf-guestrin.pdf

