
Web Mining and Recommender Systems

Algorithms for advertising

Learning Goals

• Introduce the topic of algorithmic

advertising

Classification

Will I click on

this ad?

Predicting which ads people click on might be a classification

problem

Recommendation

my (user’s)

“preferences”
HP’s (item)

“properties”
preference

Toward

“action”

preference toward

“special effects”

is the movie

action-

heavy?

are the special effects good?

Compatibility

Or… predicting which ads people click on might be a

recommendation problem

Advertising

So, we already have good algorithms for

predicting whether a person would click

on an ad, and generally for

recommending items that people will

enjoy.

So what’s different about ad

recommendation?

Advertising

1. We can’t recommend everybody the

same thing (even if they all want it!)

• Advertisers have a limited budget – they wouldn’t be able to

afford having their content recommended to everyone

• Advertisers place bids – we must take their bid into account

(as well as the user’s preferences – or not)

• In other words, we need to consider both what the user and

the advertiser want (this is in contrast to recommender

systems, where the content didn’t get a say about whether it

was recommended!)

Advertising

2. We need to be timely

• We want to make a personalized recommendations

immediately (e.g. the moment a user clicks on an ad) – this

means that we can’t train complicated algorithms (like what

we saw with recommender systems) in order to make

recommendations later

• We also want to update users’ models immediately in

response to their actions

• (Also true for some recommender systems)

Advertising

3. We need to take context into account

• Is the page a user is currently visiting particularly relevant to

a particular type of content?

• Even if we have a good model of the user, recommending

them the same type of thing over and over again is unlikely

to succeed – nor does it teach us anything new about the

user

• In other words, there’s an explore-exploit tradeoff – we want

to recommend things a user will enjoy (exploit), but also to

discover new interests that the user may have (explore)

Advertising

So, ultimately we need
1) Algorithms to match users and ads, given budget

constraints

users advertisers

(each advertiser

gets one user)

.92

.75

.24

.67

.97

.59

.58

bid / quality of the

recommendation

Advertising

So, ultimately we need
2) Algorithms that work in real-time and don’t depend on

monolithic optimization problems

users advertisers

(each advertiser

gets one user)

.92

users arrive one at

a time (but we still

only get one ad

per advertiser) –

how to generate a

good solution?

Advertising

So, ultimately we need
3) Algorithms that adapt to users and capture the notion of an

exploit/explore tradeoff

Web Mining and Recommender Systems

Advertising: Matching problems

Learning Goals

• Introduce matching algorithms

• Explain the key differences between

ad recommendation and other types

of recommendation

Let’s start with…

1. We can’t recommend everybody the

same thing (even if they all want it!)

• Advertisers have a limited budget – they wouldn’t be able to

afford having their content recommended to everyone

• Advertisers place bids – we must take their bid into account

(as well as the user’s preferences – or not)

• In other words, we need to consider both what the user and

the advertiser want (this is in contrast to recommender

systems, where the content didn’t get a say about whether it

was recommended!)

Bipartite matching

Let’s start with a simple version of the

problem we ultimately want to solve:

1) Every advertiser wants to show one ad

2) Every user gets to see one ad

3) We have some pre-existing model that

assigns a score to user-item pairs

Bipartite matching

Suppose we’re given some scoring function:

Could be:

• How much the owner of a is willing to pay to show their ad to u

• How much we expect the user u to spend if they click the ad a

• Probability that user u will click the ad a

Output of a regressor / logistic regressor!

Bipartite matching

Then, we’d like to show each user one ad, and we’d like each ad

to be shown exactly once so as to maximize this score (bids,

expected profit, probability of clicking etc.)

s.t.

each advertiser gets to show one ad

Bipartite matching

Then, we’d like to show each user one ad, and we’d like each ad

to be shown exactly once so as to maximize this score (bids,

expected profit, probability of clicking etc.)

s.t.

each advertiser gets to show one ad

Bipartite matching

users ads

(each advertiser

gets one user)

We can set this up as a bipartite matching problem

• Construct a complete bipartite graph between users and ads,

where each edge is weighted according to f(u,a)

• Choose edges such that each node is connected to exactly

one edge

.75

.24

.67

.97

.59

.92

.58

Bipartite matching

men women

(each user of an

online dating

platform gets

shown exactly one

result)

.75

.24

.67

.97

.59

.92

.58

This is similar to the problem solved by (e.g.) online dating sites

to match men to women

For this reason it is called a marriage problem

Bipartite matching

This is similar to the problem solved by (e.g.) online dating sites

to match men to women

For this reason it is called a marriage problem

• A group of men should marry an (equally sized) group of

women such that happiness is maximized, where “happiness”

is measured by f(m,w)

• Marriages are monogamous, heterosexual, and everyone gets

married

(see also the original formulation, in which men have a preference function over

women, and women have a different preference function over men)

compatibility between male m and female w

Bipartite matching

We’ll see one solution to this problem,

known as stable marriage

• Maximizing happiness turns out to be quite hard

• But, a solution is “unstable” if:

m w’

w

m’
• A man m is matched to a woman w’ but

would prefer w (i.e., f(m,w’) < f(m,w))

and

• The feeling is mutual – w prefers m to

her partner (i.e., f(w,m’) < f(m,w))

• In other words, m and w would both

want to “cheat” with each other

Bipartite matching

We’ll see one solution to this problem,

known as stable marriage

• A solution is said to be stable if this is never satisfied for any

pair (m,w)

m w’

w

m’
• Some people may covet another

partner,

but

• The feeling is never reciprocated by the

other person

• So no pair of people would mutually

want to cheat

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• Men propose to women (this algorithm is from 1962!)

• While there is a man m who is not engaged

• He selects his most compatible partner,

(to whom he has not already proposed)

• If she is not engaged, they become engaged

• If she is engaged (to m’), but prefers m, she breaks things

off with m’ and becomes engaged to m instead

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

All men and all women are initially ‘free’ (i.e., not engaged)

while there is a free man m, and a woman he has not proposed to

w = max_w f(m,w)

if (w is free):

(m,w) become engaged (and are no longer free)

else (w is engaged to m’):

if w prefers m to m’ (i.e., f(m,w) > f(m’,w)):

(m,w) become engaged

m’ becomes free

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The algorithm terminates

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The algorithm terminates

(either the number of free people decreases at each step, or, if it

stays the same, the happiness increases)

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is stable

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is stable

(suppose m and w prefer each other to their current partners, w’

and m’

But m would have proposed to w before he proposed to w’

- if w rejected his proposal, she must have been with someone

she liked better

- if w accepted his proposal (but dumped him later), it must

also have been for someone she likes better)

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is O(n^2)

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is O(n^2)

(every proposal is made at most once, and there are O(n^2)

proposals

The input is O(n^2) (i.e., the compatibility function) so it

certainly couldn’t be better than O(n^2))

Bipartite matching – extensions/improvements

Can all of this be improved upon?

1) It’s not optimal

Bipartite matching – extensions/improvements

Can all of this be improved upon?

1) It’s not optimal

• Although there’s no pair of individuals who would be happier

by cheating, there could be groups of men and women who

would be ultimately happier if the graph were rewired

• To get a truly optimal solution, there’s a more complicated

algorithm, known as the “Hungarian Algorithm”

• But it’s O(n^3)

• And really complicated and unintuitive (but there’s a ref later)

Bipartite matching – extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous,

heterosexual, and everyone gets married

• Each advertiser may have a fixed

budget of (1 or more) ads

• We may have room to show more than

one ad to each customer

• See “Stable marriage with multiple

partners: efficient search for an optimal

solution” (refs)

(each user

gets shown

two ads, each

ad gets

shown to two

users)

Bipartite matching – extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous,

heterosexual, and everyone gets married
• This version of the problem is

know as graph cover (select

edges such that each node is

connected to exactly one edge)

• The algorithm we saw is really just

graph cover for a bipartite graph

• Can be solved via the “stable

roommates” algorithm (see refs)

and extended in the same ways

Bipartite matching – extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous,

heterosexual, and everyone gets married

• This version of the problem can

address a very different variety of

applications compared to the

bipartite version

• Roommate matching

• Finding chat partners

• (or any sort of person-to-person

matching)

Bipartite matching – extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous,

heterosexual, and everyone gets married

• Easy enough just to create “dummy

nodes” that represent no matchusers ads

no ad is shown to the corresponding user

Bipartite matching – applications

Why are matching problems so important?

• Advertising

• Recommendation

• Roommate assignments

• Assigning students to classes

• General resource allocation problems

• Transportation problems (see “Methods of Finding the

Minimal Kilometrage in Cargo-transportation in space”)

• Hospitals/residents

Bipartite matching – applications

Why are matching problems so important?

• Point pattern matching

Bipartite matching – extensions/improvements

What about more complicated rules?

• (e.g. for hospital residencies) Suppose we want to keep

couples together

• Then we would need a more complicated function that

encodes these pairwise relationships:

pair of residents hospitals to which they’re assigned

So far…

Surfacing ads to users is a like a little like

building a recommender system for ads

• We need to model the compatibility between each user and each

ad (probability of clicking, expected return, etc.)

• But, we can’t recommend the same ad to every user, so we have to

handle “budgets” (both how many ads can be shown to each user

and how many impressions the advertiser can afford)

• So, we can cast the problem as one of “covering” a bipartite graph

• Such bipartite matching formulations can be adapted to a wide

variety of tasks

Learning Outcomes

• Introduced algorithms for matching

• Explained how ad recommendation

problems have constraints not

present in other forms of

recommendation

Questions?

Further reading:

• The original stable marriage paper
“College Admissions and the Stability of Marriage” (Gale, D.; Shapley, L. S., 1962):

https://www.jstor.org/stable/2312726

• The Hungarian algorithm
“The Hungarian Method for the assignment problem” (Kuhn, 1955):

https://tom.host.cs.st-andrews.ac.uk/CS3052-CC/Practicals/Kuhn.pdf

• Multiple partners
“Stable marriage with multiple partners: efficient search for an optimal solution” (Bansal et

al., 2003)

• Graph cover & stable roommates
“An efficient algorithm for the ‘stable roommates’ problem” (Irving, 1985)

https://dx.doi.org/10.1016%2F0196-6774%2885%2990033-1

https://www.jstor.org/stable/2312726
https://tom.host.cs.st-andrews.ac.uk/CS3052-CC/Practicals/Kuhn.pdf
https://dx.doi.org/10.1016/0196-6774(85)90033-1

Web Mining and Recommender Systems

AdWords

Learning Goals

• Introduce the AdWords algorithm

• Explain the need to make ad

recommendations in "real time"

Advertising

1. We can’t recommend everybody the

same thing (even if they all want it!)

• So far, we have an algorithm that takes “budgets” into

account, so that users are shown a limited number of ads,

and ads are shown to a limited number of users

• But, all of this only applies if we see all the users and all the

ads in advance

• This is what’s called an offline algorithm

Advertising

2. We need to be timely

• But in many settings, users/queries come in one at a time,

and need to be shown some (highly compatible) ads

• But we still want to satisfy the same quality and budget

constraints

• So, we need online algorithms for ad recommendation

What is adwords?

Adwords allows advertisers to bid on

keywords

• This is similar to our matching setting in that advertisers have

limited budgets, and we have limited space to show ads

image from blog.adstage.io

What is adwords?

Adwords allows advertisers to bid on

keywords

• This is similar to our matching setting in that advertisers have

limited budgets, and we have limited space to show ads

• But, it has a number of key differences:

1. Advertisers don’t pay for impressions, but rather they pay

when their ads get clicked on

2. We don’t get to see all of the queries (keywords) in advance –

they come one-at-a-time

What is adwords?

Adwords allows advertisers to bid on

keywords

keywords

ads/advertisers

• We still want to match

advertisers to keywords to

satisfy budget constraints

• But can’t treat it as a

monolithic optimization

problem like we did before

• Rather, we need an online

algorithm

What is adwords?

Suppose we’re given

• Bids that each advertiser is willing to make for each query

(this is how much they’ll pay if the ad is clicked on)

• Each is associated with a click-through rate

• Budget for each advertiser (say for a 1-week period)

• A limit on how many ads can be returned for each query

query advertiser

What is adwords?

And, every time we see a query

• Return at most the number of ads that can fit on a page

• And which won’t overrun the budget of the advertiser

(if the ad is clicked on)

Ultimately, what we want is an algorithm

that maximizes revenue – the number of

ads that are clicked on, multiplied by the

bids on those ads

Competitiveness ratio

What we’d like is:

the revenue should be as close as possible to what we

would have obtained if we’d seen the whole problem up

front

(i.e., if we didn’t have to solve it online)

We’ll define the competitive ratio as:

see http://infolab.stanford.edu/~ullman/mmds/book.pdf for more detailed definition

http://infolab.stanford.edu/~ullman/mmds/book.pdf

Greedy solution

Let’s start with a simple version of the

problem…

1. One ad per query

2. Every advertiser has the same budget

3. Every ad has the same click through rate

4. All bids are either 0 or 1

(either the advertiser wants the query, or they don’t)

Greedy solution

Then the greedy solution is…

• Every time a new query comes in, select any advertiser who

has bid on that query (who has budget remaining)

• What is the competitive ratio of this algorithm?

Greedy solution

The balance algorithm

A better algorithm…

• Every time a new query comes in, amongst advertisers who

have bid on this query, select the one with the largest

remaining budget

• How would this do on the same sequence?

The balance algorithm

see http://infolab.stanford.edu/~ullman/mmds/book.pdf for proof

A better algorithm…

• Every time a new query comes in, amongst advertisers who

have bid on this query, select the one with the largest

remaining budget

• In fact, the competitive ratio of this algorithm (still with

equal budgets and fixed bids) is (1 – 1/e) ~ 0.63

http://infolab.stanford.edu/~ullman/mmds/book.pdf

The balance algorithm

What if bids aren’t equal?

Bidder Bid (on q) Budget

A 1 110

B 10 100

The balance algorithm

What if bids aren’t equal?

Bidder Bid (on q) Budget

A

B

The balance algorithm v2

We need to make two modifications

• We need to consider the bid amount when selecting the

advertiser, and bias our selection toward higher bids

• We also want to use some of each advertiser’s budget

(so that we don’t just ignore advertisers whose budget is small)

The balance algorithm v2

Advertiser:

fraction of budget remaining:

bid on query q:

Assign queries to whichever advertiser maximizes:

(could multiply by click-

through rate if click-

through rates are not equal)

The balance algorithm v2

Properties

• This algorithm has a competitive ratio of .

• In fact, there is no online algorithm for the adwords

problem with a competitive ratio better than .

(proof is too deep for me…)

Adwords

So far we have seen…

• An online algorithm to match advertisers to users (really to

queries) that handles both bids and budgets

• We wanted our online algorithm to be as good as the

offline algorithm would be – we measured this using the

competitive ratio

• Using a specific scheme that favored high bids while trying

to balance the budgets of all advertisers, we achieved a ratio

of .

• And no better online algorithm exists!

Adwords

We haven’t seen…

• AdWords actually uses a second-price auction

(the winning advertiser pays the amount that the second

highest bidder bid)

• Advertisers don’t bid on specific queries, but inexact matches

(‘broad matching’) – i.e., queries that include subsets,

supersets, or synonyms of the keywords being bid on

Learning Outcomes

• Introduced the AdWords algorithm

• Showed how to greedily recommend

ads in real time

• Discussed theoretical properties of

this solution

Questions?

Further reading:

• Mining of Massive Datasets – “The Adwords Problem”

http://infolab.stanford.edu/~ullman/mmds/book.pdf

• AdWords and Generalized On-line Matching (A. Mehta)

http://web.stanford.edu/~saberi/adwords.pdf

http://infolab.stanford.edu/~ullman/mmds/book.pdf
http://web.stanford.edu/~saberi/adwords.pdf

Web Mining and Recommender Systems

Bandit algorithms

Learning Goals

• Introduce Bandit algorithms

• Discuss the notion of

exploration/exploitation tradeoffs for

ad recommendation

• Discuss how to incorporate learning

into an ad recommendation

algorithm

So far…

1. We’ve seen algorithms to handle

budgets between users (or queries)

and advertisers

2. We’ve seen an online version of these

algorithms, where queries show up

one at a time

3. Next, how can we learn about which

ads the user is likely to click on in the

first place?

Bandit algorithms

3. How can we learn about which ads the

user is likely to click on in the first place?

• If we see the user click on a car ad once, we know that

(maybe) they have an interest in cars

• So… we know they like car ads, should we keep

recommending them car ads?

• No, they’ll become less and less likely to click it, and in the

meantime we won’t learn anything new about what else the

user might like

Bandit algorithms

• Sometimes we should surface car ads (which we

know the user likes),

• but sometimes, we should be willing to take a

risk, so as to learn what else the user might like

one-armed

bandit

Setup

. . .
K bandits (i.e., K arms)

1

0

1

1

0

0

0

0

1

0

0

1

0

1

0

0

1

0

1

0

0

0

0

0

0

1

1

round t

t = 1

2

3

4

5

6

7

8

9

0

1

1

1

0

0

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

0

1

1

0

0

0

0

1

1

0

0

1

1

1

0

reward

• At each round t, we select

an arm to pull

• We’d like to pull the arm to

maximize our total reward

Setup

. . .
K bandits (i.e., K arms)

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

round t

t = 1

2

3

4

5

6

7

8

9

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

• At each round t, we select

an arm to pull

• We’d like to pull the arm to

maximize our total reward

• But – we don’t get to see

the reward function!

reward

Setup

. . .
K bandits (i.e., K arms)

1

?

?

?

0

?

?

?

?

?

0

?

?

?

?

?

?

?

?

?

?

?

?

?

?

1

1

round t

t = 1

2

3

4

5

6

7

8

9

?

?

?

?

?

?

?

?

?

?

?

?

?

?

0

?

?

?

?

?

1

0

?

?

?

?

?

?

?

?

?

?

?

1

?

?

• At each round t, we select

an arm to pull

• We’d like to pull the arm to

maximize our total reward

• But – we don’t get to see

the reward function!

• All we get to see is the

reward we got for the arm

we picked at each round

reward

Setup

: number of arms (ads)

: number of rounds

: rewards

: which arm we pick at each round

: how much (0 or 1) this choice wins us

want to minimize regret:

reward our strategy would

get (in expectation)

reward we could have got, if

we had played optimally

Goal

• We need to come up with a

strategy for selecting arms to

pull (ads to show) that would

maximize our expected reward

• For the moment, we’re assuming

that rewards are static, i.e., that

they don’t change over time

Strategy 1 – “epsilon first”

• Pull arms at random for a while to learn the

distribution, then just pick the best arm

• (show random ads for a while until we learn

the user’s preferences, then just show what

we know they like)

: Number of steps to choose optimally

Math

: Number of steps to sample randomly

Strategy 1 – “epsilon first”

• Pull arms at random for a while to learn the

distribution, then just pick the best arm

• (show random ads for a while until we learn

the user’s preferences, then just show what

we know they like)

Math

Strategy 2 – “epsilon greedy”

• Select the best lever most of the time, pull a

random lever some of the time

• (show random ads sometimes, and the best

ad most of the time)

• Empirically, worse than epsilon-first

• Still doesn’t handle context/time

: Fraction of times to choose optimallyMath

: Fraction of times to sample randomly

Strategy 3 – “epsilon decreasing”

• Same as epsilon-greedy (Strategy 2), but

epsilon decreases over time

Math

Strategy 4 – “Adaptive epsilon greedy”

• Similar to as epsilon-decreasing (Strategy 3),

but epsilon can increase and decrease over

time

Math

Extensions

• The reward function may not be static, i.e., it may change

each round according to some process

• It could be chosen by an adversary

• The reward may not be [0,1] (e.g. clicked/not clicked), but

instead a could be a real number (e.g. revenue), and we’d

want to estimate the distribution over rewards

Extensions – Contextual Bandits

• There could be context associated with each time step

• The query the user typed

• What the user saw during the previous time step

• What other actions the user has recently performed

• Etc.

Applications (besides advertising)

• Clinical trials
(assign drugs to patients, given uncertainty about the

outcome of each drug)

• Resource allocation
(assign person-power to projects, given uncertainty about

the reward that different projects will result in)

• Portfolio design
(invest in ventures, given uncertainty about which will

succeed)

• Adaptive network routing
(route packets, without knowing the delay unless you send

the packet)

Learning Outcomes

• Introduced Bandit algorithms

• Discussed the notion of

exploration/exploitation tradeoffs for

ad recommendation

• Saw some settings beyond

advertising where this notion could

be useful

References

Further reading:
Tutorial on Bandits:

https://sites.google.com/site/banditstutorial/

https://sites.google.com/site/banditstutorial/

Web Mining and Recommender Systems

Case study – Turning down the noise

Turning down the noise

“Turning down the noise in the

Blogosphere”
(By Khalid El-Arini, Gaurav Veda, Dafna Shahaf, Carlos Guestrin)

Goals:

1. Help to filter huge amounts of content, so that users see

content that is relevant – rather than seeing popular

content over and over again

2. Maximize coverage so that a variety of different content is

recommended

3. Make recommendations that are personalized to each user

some slides http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-shahaf-guestrin.pptx

Turning down the noise

“Turning down the noise in the

Blogosphere”
(By Khalid El-Arini, Gaurav Veda, Dafna Shahaf, Carlos Guestrin)

Goals:

1. Help to filter huge amounts of content, so that users see

content that is relevant – rather than seeing popular

content over and over again

2. Maximize coverage so that a variety of different content is

recommended

3. Make recommendations that are personalized to each user

Similar to our goals with bandit

algorithms

• Exploit by recommending

content that we user is likely to

enjoy (personalization)

• Explore by recommending a

variety of content (coverage)

Turning down the noise

1. Help to filter huge amounts of content,

so that users see content that is relevant

from http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-shahaf-guestrin.pptx

Turning down the noise

2. Maximize coverage so that a variety of

different content is recommended

Turning down the noise

3. Make recommendations that are

personalized to each user

1. Data and problem setting

• Data: Blogs (“the blogosphere”)

• Comparison: other systems that aggregate blog data

1. Data and problem setting

• Low-level features:

Bags-of-words, noun phrases, named entities

• High-level features:

Low-dimensional document representations, topic

models

2. Maximize coverage

…Features

Posts …

cover () = amount by which { , } covers

Set A Feature fcoverA(f)

• We’d like to choose a (small) set of

documents that maximally cover the set of

features the user is interested in (later)

2. Maximize coverage

…Features

Posts …

feature

set

feature

importance

coverage of

feature by A

• Can be done (approximately) by selecting documents

greedily (with an approximation ratio of (1 – 1/e)

2. Maximize coverage

Works pretty well!

(and there are some

comparisons to existing blog

aggregators in the paper)

But – no personalization

3. Personalize

feature

set

personalized

feature

importance

coverage of

feature by A

• Need to learn weights for each user based on their

feedback (e.g. click/not-click) on each post

3. Personalize

feature

set

personalized

feature

importance

coverage of

feature by A

• Need to learn weights for each user based on their

feedback (e.g. click/not-click) on each post

• A click (or thumbs-up) on a post increases for

the features f associated with the post

• Not clicking (or thumbs-down) decreases for the

features f associated with the post

3. Personalize

day 1 day 2 day 3

feedback

on articles

suggested

weighted

interest in

topic

Summary

• Want an algorithm that covers the set

of topics that each user wants to see

• Articles can be chosen greedily, while

still covering the topics nearly optimally

• The topics to cover can also be

personalized to each user, by updating

their preferences in response to user

feedback

• Evaluated on real blog data (see paper!)

Recently...

We’ve looked at three features to handle

the properties unique to online

advertising
1. We need to handle budgets at the level of users and

content (Matching problems)

2. We need algorithms that can operate online (i.e., as

users arrive one-at-a-time) (AdSense)

3. We need to algorithms that exhibit an explore-exploit

tradeoff (Bandit algorithms)

Questions?

Further reading:

• Turning down the noise in the blogosphere

(by Khalid El-Arini, Gaurav Veda, Dafna Shahaf, Carlos

Guestrin)
http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-

shahaf-guestrin.pptx

http://www.cs.cmu.edu/~dshahaf/kdd2009-elarini-veda-shahaf-guestrin.pdf

http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-shahaf-guestrin.pptx
http://www.cs.cmu.edu/~dshahaf/kdd2009-elarini-veda-shahaf-guestrin.pdf

