
Web Mining and Recommender Systems

Advanced Recommender Systems: Bayesian 

Personalized Ranking



Coming up

Methodological papers

• Bayesian Personalized Ranking

• Factorizing Personalized Markov Chains

• Personalized Ranking Metric Embedding



Coming up

Application papers

• Recommending Product Sizes to 

Customers

• Playlist Prediction via Metric Embedding

• Google's Smart Reply



Bayesian Personalized Ranking



Bayesian Personalized Ranking

Goal: Estimate a personalized ranking 

function for each user



Bayesian Personalized Ranking

Why? Compare to “traditional” approach of 

replacing “missing values” by 0:

But! “0”s aren’t necessarily negative!



Bayesian Personalized Ranking

Why? Compare to “traditional” approach of 

replacing “missing values” by 0:

This suggests a possible solution

based on ranking



Bayesian Personalized Ranking

Defn: AUC (for a user u)

scoring function that 

compares an item i to 

an item j for a user u

The AUC essentially counts how many times the model 

correctly identifies that u prefers the item they bought 

(positive feedback) over the item they did not

(                          )



Bayesian Personalized Ranking

Defn: AUC (for a user u)

AUC = 1: We always guess correctly among 

two potential items i and j

AUC = 0.5: We guess no better than random



Bayesian Personalized Ranking

Defn: AUC

= Area Under Precision Recall Curve



Bayesian Personalized Ranking

Summary: Goal is to count how many times we identified

i as being more preferable than j for a user u



Bayesian Personalized Ranking

Summary: Goal is to count how many times we identified

i as being more preferable than j for a user u



Bayesian Personalized Ranking

Idea: Replace the counting function                        by a smooth function

is any function that compares the          

compatibility of i and j for a user u

e.g. could be based on matrix factorization:



Bayesian Personalized Ranking

Idea: Replace the counting function                        by a smooth function



Bayesian Personalized Ranking

Idea: Replace the counting function                        by a smooth function



Bayesian Personalized Ranking

Experiments:

• RossMann (online drug store)

• Netflix (treated as a binary problem)



Bayesian Personalized Ranking

Experiments:



Bayesian Personalized Ranking

Morals of the story:

• Given a “one-class” prediction task (like purchase 

prediction) we might want to optimize a ranking 

function rather than trying to factorize a matrix 

directly

• The AUC is one such measure that counts among a 

users u, items they consumed i, and items they did 

not consume, j, how often we correctly guessed 

that i was preferred by u

• We can optimize this approximately by maximizing

where 



Web Mining and Recommender Systems

Advanced Recommender Systems: 

Factorized Personalized Markov Chains



Factorizing Personalized Markov Chains for Next-

Basket Recommendation



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

Goal: build temporal models just by 

looking at the item the user purchased 

previously

(or              )



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

Assumption: all of the information 

contained by temporal models is 

captured by the previous action

this is what’s known as a first-order 

Markov property



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

Is this assumption realistic?



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

Data setup: Rossmann basket data



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

Prediction task:



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

Could we try and compute such probabilities

just by counting?

Seems okay, as long as the item vocabulary is small

(I^2 possible item/item combinations to count)

But it’s not personalized



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

What if we try to

personalize?

Now we would have U*I^2 counts to compare

Clearly not feasible, so we need to try and 

estimate/model this quantity (e.g. by matrix factorization)



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

What if we try to

personalize?



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

What if we try to

personalize?



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

Prediction task:



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

Prediction task:



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

F@5
FMC: not

personalized

MF: personalized, but not 

sequentially-aware



Factorizing Personalized Markov Chains for Next-

Basket Recommendation

Morals of the story:

• Can improve performance by modeling third 

order interactions between the user, the item, and 

the previous item

• This is simpler than temporal models – but makes a 

big assumption

• Given the blowup in the interaction space, this can 

be handled by tensor decomposition techniques



Web Mining and Recommender Systems

Advanced Recommender Systems: 

Personalized Ranking Metric Embedding



Personalized Ranking Metric Embedding for Next New 

POI Recommendation



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Goal: Can we build better sequential 

recommendation models by using the 

idea of metric embeddings

vs.



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Why would we expect this to work (or not)?



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Otherwise, goal is the same as the 

previous paper:



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Data



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Qualitative analysis



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Qualitative analysis



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Basic model (not personalized)



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Basic model (not personalized)



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Personalized version



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Personalized version



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Learning



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Results



Personalized Ranking Metric Embedding for Next New 

POI Recommendation

Morals of the story:

• In some applications, metric embeddings might 

be better than inner products

• Examples could include geographical data, but also 

others (e.g. playlists?)



Overview

Morals of the story:

• Today we looked at two main ideas that extend the 

recommender systems we saw in class:

1. Sequential Recommendation: Most of the 

dynamics due to time can be captured purely by 

knowing the sequence of items

2. Metric Recommendation: In some settings, using 

inner products may not be the correct assumption



Web Mining and Recommender Systems

Real-world applications of recommender systems:

Recommending Product Sizes



Recommending product sizes to customers



Recommending product sizes to customers

Goal: Build a recommender system 

that predicts whether an item will “fit”:



Recommending product sizes to customers

Challenges:

• Data sparsity: people have very few 

purchases from which to estimate size

• Cold-start: How to handle new 

customers and products with no past 

purchases?

• Multiple personas: Several customers 

may use the same account



Recommending product sizes to customers

Data:

• Shoe transactions from Amazon.com

• For each shoe j, we have a reported size c_j

(from the manufacturer), but this may not 

be correct!

• Need to estimate the customer’s size (s_i), 

as well as the product’s true size (t_j)



Recommending product sizes to customers

Loss function:



Recommending product sizes to customers

Loss function:



Recommending product sizes to customers

Loss function:



Recommending product sizes to customers



Recommending product sizes to customers

Loss function:



Recommending product sizes to customers

Model fitting:



Recommending product sizes to customers

Extensions:

• Multi-dimensional sizes

• Customer and product features

• User personas



Recommending product sizes to customers

Experiments:



Recommending product sizes to customers

Experiments:

Online A/B test



Recommending product sizes to customers

Morals of the story:

• Very simple model that actually works well in 

production

• Only a single parameter per user and per item!



Web Mining and Recommender Systems

Real-world applications of recommender systems:

Playlist Prediction via Metric Embedding



Playlist prediction via Metric Embedding



Playlist prediction via Metric Embedding

Goal: Build a recommender system 

that recommends sequences of songs

Idea: Might also use a metric 

embedding (consecutive songs should 

be “nearby” in some space)



Playlist prediction via Metric Embedding

Basic model:

(compare with metric model from previous lecture)



Playlist prediction via Metric Embedding

Basic model (“single point”):



Playlist prediction via Metric Embedding

“Dual-point” model



Playlist prediction via Metric Embedding

Extensions:

• Popularity biases



Playlist prediction via Metric Embedding

Extensions:

• Personalization



Playlist prediction via Metric Embedding

Extensions:

• Semantic Tags



Playlist prediction via Metric Embedding

Extensions:

• Observable Features



Playlist prediction via Metric Embedding

Experiments:

Yes.com playlists

• Dec 2010 – May 2011

“Small” dataset:

• 3,168 songs

• 134,431 playlists + 1,191,279 transitions

“Large” dataset

• 9,775 songs

• 172,510 playlists + 1,602,079 transitions



Playlist prediction via Metric Embedding

Experiments:



Playlist prediction via Metric Embedding

Experiments:

Small Big



Playlist prediction via Metric Embedding

Morals of the story:

• Metric assumption works well in settings other 

than “geographical” data!

• However, they require some modifications in order 

to work well (e.g. “start points” and “end points”)

• Effective combination of latent + observed 

features, as well as metric + inner-product models



Web Mining and Recommender Systems

Real-world applications of recommender systems:

Efficient Natural Language Responses (Smart Reply)



Efficient Natural Language Response Suggestion for Smart 

Reply



Efficient Natural Language Response Suggestion for Smart 

Reply

Goal: Automatically suggest common 

responses to e-mails



Efficient Natural Language Response Suggestion for Smart 

Reply

Basic setup



Efficient Natural Language Response Suggestion for Smart 

Reply

Previous solution (KDD 2016)
• Based on a seq2seq method



Efficient Natural Language Response Suggestion for Smart 

Reply

Idea: Replace this (complex) solution with a

simple multiclass classification-based solution



Efficient Natural Language Response Suggestion for Smart 

Reply

Idea: Replace this (complex) solution with a

simple multiclass classification-based solution



Efficient Natural Language Response Suggestion for Smart 

Reply

Model: S(x,y)



Efficient Natural Language Response Suggestion for Smart 

Reply

Model: Architecture v1



Efficient Natural Language Response Suggestion for Smart 

Reply

Model: Architecture v2



Efficient Natural Language Response Suggestion for Smart 

Reply

Model: Extensions



Efficient Natural Language Response Suggestion for Smart 

Reply

Model: Extensions



Efficient Natural Language Response Suggestion for Smart 

Reply

Experiments: (offline)



Efficient Natural Language Response Suggestion for Smart 

Reply

Experiments: (online)



Efficient Natural Language Response Suggestion for 

Smart Reply

Morals:

• Even a seemingly complex problem like natural-

language response generation can be cast as a 

multiclass classification problem!

• Even a simple bag-of-words model proved to be 

sufficient, no need to handle “grammar” etc.

• Also, no personalization (though to what extent 

would this be possible with the data available?)



Overview

Morals:

• State-of-the-art recommender systems (whether 

from academia or industry) are not so far from 

what we learned in class

• All of them depended on some kind of maximum-

likelihood expression, along with gradient 

ascent/descent!


