CSE 20, Fall 2020 - Homework 4

Due: Monday 11/09 at 11 am PDT

Instructions

Upload a single file to Gradescope for each group. All group members’ names and PIDs should be on each page of the submission. You should select appropriate pages for each question when submitting to Gradescope. Your assignments in this class will be evaluated not only on the correctness of your answers, but on your ability to present your ideas clearly and logically. You should always explain how you arrived at your conclusions, using mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument for why something is true, your answers should always be well-supported. Your goal should be to convince the reader that your results and methods are sound.

Reading Section 1.5 Table 1 (p. 60); Section 2.1, Definitions 1-3 (pp. 116-119), Definitions 6-8 (pp. 121-123); Section 2.2 Definitions 1-5 (pp. 127-129) and Table 1 (p. 130), Section 5.3 Definition of Structural Induction

Key Concepts Proof Strategies, Set Definitions and Induction
Problem 1 (20 points)

Consider Apple's newest product iPhone 14 (some point in the future). It has 4 types of memory defined as set $M = \{32G, 64G, 128G, 256G\}$ and it has 5 types of color defined as set $C = \{\text{black, white, gray, green, orange}\}$.

Customers are allowed to choose their favorite combination of memory type and color when purchasing the product. The domain of an iPhone 14 is defined as $D = M \times C = \{(m, c) \mid m \in M, c \in C\}$.

All colors the same memory type have the same price. For different memory types, the iPhone 14 are at different prices defined by the function $Price(m)$ with units in dollars:

- $Price(32G) = 200$
- $Price(64G) = 250$
- $Price(128G) = 300$
- $Price(256G) = 400$

Consider the following questions:

(a) Consider Alice wants to buy an iPhone 14. Translate the following statement in first-order logic (in predicates with quantifiers), then prove or disprove the statement. Please identify your proof strategy. (Hint: Prove for all quantifier is true, use exhaustion or universal generalization; disprove for all quantifier statements, use counterexample)

“If Alice has more than 400 dollars, then she can buy any model of iPhone 14”

Solution:
First order logic: $\forall x \in D, P(Alice, 450) \rightarrow Q(x, 450)$
Define $P(x, y)$ as person x has more than y dollars.
Define $Q(x, y)$ as iPhone 14 model x has a price less than or equal to y (or something makes sense)

Prove the statement by exhaustion. There are 20 elements in the domain D. Because all the colors of the same memory type have the same price, it is sufficient to prove the statement is true for all memory types. (1) Memory type 32G in all colors has price 200 < 450, (2) Memory type 64G in all colors has price 250 < 450; (3) Memory type 128G in all colors has price 300, 300 < 450; (4) Memory type 256G in all colors has price 400 < 450.
Hence we proved that if Alice has more than 450 dollars, she can buy any model of iPhone 14 by exhaustion.

(b) Prove or disprove that all green iPhone 14’s are more expensive than 380 dollars. Translate the statement in first-order logic (in predicates with quantifiers), then prove or disprove the statement. Please identify your proof strategy.

“All green iPhone 14’s are more expensive than 380 dollars”

Solution:
First order logic: \(\forall x \in D, P(x) \rightarrow \text{Price}(x) \geq 380 \)
Define \(P(x) \) as \(P(x) = x \in \{(m, \text{green}), m \in M\} \)
(or something makes sense)

Disprove the statement by counterexample. Consider an green iPhone 14 with 32G memory. Price((32G, green)) = 200, which is less than 380, which contradicts with the statement. Hence we proved that the statement is false by counterexample.

(c) Consider the set \(A = \{(32G, \text{black}), (32G, \text{white}), (64G, \text{orange}), (128G, \text{orange})\} \) Prove or disprove the following statement.

\(\forall x, x \in A \rightarrow x \in D \)

Solution:
Proof this is true by exhaustion. We assume \(x \in A \) is true and show that \(x \in D \) is true. Therefore are 4 elements in A, (1) (32G, black) is in D because 32G is in M and black is in C, therefore (32G, black) is in \(M \times C \), hence in D. (2) (32G, white) is in D because 32G is in M and white is in C, therefore (32G, white) is in \(M \times C \), hence in D. (3) (64G, orange) is in D because 64G is in M and orange is in C, therefore (64G, orange) is in \(M \times C \), hence in D. (4) (128G, orange) is in D because 128G is in M and orange is in C, therefore (128G, orange) is in \(M \times C \), hence in D.
We showed that if \(x \) is in A, then it is in D, therefore the statement is proved.

Problem 2 (20 points)
Consider the Fibonnaci sequence, which is a number sequence starting with 0 and 1, then each number is the sum of the two preceding ones.

(a) Prove or disprove the following claim

“There are 3 consecutive odd Fibonnaci numbers”
Solution: We prove the statement is false by contradiction. Assume that there are 3 consecutive odd Fibonnaci numbers, then the third number equals the sum of previous 2 numbers. However, we know that the sum of two odd numbers results in an even number, which contradicts with the assumption. Hence there does not exist 3 consecutive odd Fibonnaci numbers.

(b) Prove or disprove the following claim

"There are 3 consecutive prime Fibonnaci numbers"

Solution: We prove this by giving a witness. 2, 3, 5 are 3 consecutive prime Fibonnaci numbers. (NOTICE: 0 and 1 are NOT prime number)

Problem 3 (20 points)

Consider sets $A = \{1, 3, 5, 6, 7\}$, $B = \{0, 1, 3, 7, 9\}$ and two arbitrary sets C and D, P denotes the power set. Answer the following questions:

(a) Please fill-in the blank: $A \cup B = \{0, 1, 3, 5, 6, 7, 9\}$

(b) Please fill-in the blank: $A - B = \{5, 6\}$

(c) Write the power set $P(A \cap B) = \varnothing, \{1\}, \{3\}, \{7\}, \{1, 3\}, \{3, 7\}, \{1, 7\}, \{1, 3, 7\}$

(d) Prove or disprove the following claim:

$A - B = B - A$

Solution: We disprove the statement directly. $A-B=\{5,6\}$ and $B-A=\{0,9\}$. $\{5,6\} \neq \{0,9\}$, which implies that $A-B \neq B-A$, therefore the statement is false.

(e) Prove or disprove the following claim:

$P(C) \subseteq P(D) \Leftrightarrow C \subseteq D$

Solution:

We prove the statement proving both directions.

(1) we prove that $P(C) \subseteq P(D)$ implies $C \subseteq D$

(a) Proof: We show this statement by direct proof. Assuming $P(C) \subseteq P(D)$, then every element in $P(C)$ is also an element in $P(D)$. By definition of power set, this means that all possible subsets of C is also a subset of D. Then we have for all set $A \subseteq C \rightarrow A \subseteq D$. Take $A = C$ satisfies $C \subseteq C$, therefore $C \subseteq D$.

Problem 4 (20 points)

Let us recall the definition for the set of linked lists \(L \) defined in class:
- **Basis Step:** \([\] \in L\)
- **Recursive Step:** If \(l \in L \), and \(n \in N \), then \((n,l) \in L\)

We now define 3 functions on this linked list as:

i) \(\text{nodes} : L \rightarrow P(N) \)
 - **Basis Step:** \(\text{nodes}([\]) = \emptyset \)
 - **Recursive Step:** If \(l \in L \), \(n \in N \), then \(\text{nodes}(n,l) = \{n\} \cup \text{nodes}(l) \)

ii) \(\text{sum} : L \rightarrow N \)
 - **Basis Step:** \(\text{sum}([\]) = 0 \)
 - **Recursive Step:** If \(l \in L \), \(n \in N \), then \(\text{sum}(n,l) = n + \text{sum}(l) \)

iii) \(\text{length} : L \rightarrow N \)
 - **Basis Step:** \(\text{length}([\]) = 0 \)
 - **Recursive Step:** If \(l \in L \), \(n \in N \), then \(\text{length}(n,l) = 1 + \text{length}(l) \)

a) Consider the proposition given as: \(\forall l \in L \), \(\exists c \in N \), \(\forall x \in N (x \leq c \rightarrow x \in \text{nodes}(l)) \).
 Disprove the statement by proving the negation.

b) Consider the proposition given as: \(\forall l \in L \), \(\exists c \in N \), \(\forall x \in N (x \in \text{nodes}(l) \rightarrow x \geq c) \).
 Prove the statement by applying structural induction on \(L \).

c) Consider the proposition given as: \(\forall l \in L \), \((\text{sum}(l) = \text{length}(l)) \). Disprove the statement by providing a counter-example.

Solution:

a) To disprove this proposition, we first negate the original proposition to give:

\[\neg (\forall l \in L \ , \ \exists c \in N \ , \ \forall x \in N (x \leq c \rightarrow x \in \text{nodes}(l)) \) \equiv \exists l \in L \ , \ \forall c \in N \ , \ \exists x \in N \neg (x \leq c \rightarrow x \in \text{nodes}(l)) \equiv \exists l \in L \ , \ \forall c \in N \ , \ \exists x \in N (x \leq c \wedge \neg (x \in \text{nodes}(l))) \equiv \exists l \in L , \ \forall c \in N , \ \exists x \in N (x \leq c \wedge x \in \text{nodes}(l)) \]

Therefore, we need to prove that:

\[\exists l \in L , \ \forall c \in N , \ \exists x \in N (x \leq c \wedge x \in \text{nodes}(l)) \] is true,

We will prove this by providing a witness for \(L \). For this purpose, consider: \(L = [\] \)

Now, we need to prove that for any \(c \geq 0 \), there exists an \(x \geq 0 \) such that \(x \in \text{nodes}(l) \)

(2) we prove that \(C \subseteq D \) implies \(P(C) \subseteq P(D) \)

(a) Proof: We show this statement by direct proof. Assuming \(C \subseteq D \). By definition of \(P(C) \), there is an arbitrary set \(A \in P(C) \) such that \(A \subseteq C \).
Because \(C \subseteq D \), we have \(A \subseteq C \subseteq D \), therefore \(A \in P(D) \) by definition of power set. Since all elements of \(P(C) \) is also an element of \(P(D) \), we have \(P(C) \subseteq P(D) \).

Combining (1) and (2) we have shown that \(P(C) \subseteq P(D) \Leftrightarrow C \subseteq D \)
Observe that for this choice of \(l \), the set \(\text{nodes}([]) = \varnothing \), or there is no \(x \) in the set \(\text{nodes}(l) \). Therefore the 2nd part of \(x \leq c \wedge x \in \text{nodes}(l) \) is always true. Further, we observe that for \(x = 0 \), we will always have \(0 \leq c \) (by the very definition of \(c \)). Hence, \(x = 0 \) will be a witness for any choice of \(c \). Hence, overall, \(\exists l \in L, \ \forall c \in N, \ \exists x \in N(x \leq c \wedge x \in \text{nodes}(l)) \) is true.

b) \(\forall l \in L, \ \exists c \in N, \ \forall x \in N(x \in \text{nodes}(l) \rightarrow x \geq c) \)

We need to use structural induction on the set \(L \) here to prove this. To this end, we define the basis and inductive step as:

\[\text{Basis Step} : L = [] \rightarrow \exists c \in N, \ \forall x \in N(x \in \text{nodes}([])) \rightarrow x \geq c \]

In this case, since there does not exist any \(x \in N \) that lies in \(\text{nodes}(l) \), for any choice of \(c \), the logical statement: \(x \in \text{nodes}([]) \) will be False. This means that \(x \in \text{nodes}([]) \rightarrow x \geq c \) will always be true.

\[\text{Inductive Step} : \text{Consider the arbitrary linked list} \ l' \ \text{and the natural number} \ n. \ \text{We assume by the induction hypothesis that} \ \exists c \in N, \ \forall x \in N(x \in \text{nodes}(l') \rightarrow x \geq c) \ \text{is true, with} \ c_w \ \text{acting as the witness for} \ c. \]

We need to show now that \(\exists c \in N, \ \forall x \in N(x \in \text{nodes}((n,l')) \rightarrow x \geq c) \). In this case, let us pick the witness: \(c_{w+1} = \min(c_w, n) \), that is, \(c_{w+1} \) is the lesser of \(c_w \) and \(n \). In this case, \(x \in \text{nodes}((n,l')) \Rightarrow x \in \{n\} \cup \text{nodes}(l') \). Further, since \(c_{w+1} \leq c_w \Rightarrow x \in \text{nodes}(l') \geq c_{w+1} \) from the induction hypothesis. Further, \(n \geq c_{w+1} \) by definition. Therefore, each element \(x \in \{n\} \cup \text{nodes}(l') \geq c_{w+1} \). If \(x \notin \{n\} \cup \text{nodes}(l') \) then \(x \in \text{nodes}((n,l')) \) is false, and the overall proposition is true regardless. Therefore, we have shown that for the witness \(c_{w+1} \) the overall proposition is true, and our induction hypothesis is true.

c) We need to disprove \(\forall l \in L, \ (\text{sum}(l) = \text{length}(l)) \), or effectively, prove its negation

\[\exists l \in L, \ (\text{sum}(l) \neq \text{length}(l)) \]

Consider the linked list \(l = (3,[]) \)

In this case, we calculate \(\text{sum}(l) \) as:

\[\text{sum}((3,[])) = 3 + \text{sum}([]) = 3 + 0 = 3 \]

We calculate \(\text{length}(l) \) as:

\[\text{length}((3,[])) = 1 + \text{length}([]) = 1 + 0 = 1 \]

Hence, \(\text{sum}(l) \neq \text{length}(l) \), and \(l = (3,[]) \) acts as a sufficient counter-example.

Problem 5 (20 points)

So far in this class, we have used recursion to define sets and functions. However, we have never offered a formal proof justifying our construction. We will now attempt to use structural induction to prove the correctness of the following functions. For each of the functions defined below, define the appropriate basis step and choose the correct recursive/inductive step to prove the correctness of the function:
a) Let us prove the correctness of the design for the set of all positive odd multiples of 4 (i.e.
the set \{4, 12, 20, 28, \ldots\}). To this end, we recursively define our function
\textit{multiple} : \mathbb{N} \rightarrow \mathbb{N}, which takes as an input an integer \(x \), and computes the \(x^{th} \) odd
multiple of 4 as:
\begin{itemize}
 \item \textbf{Basis Step:} \textit{multiple}(1) = 4
 \item \textbf{Recursive Step:} \textit{multiple}(x + 1) = \textit{multiple}(x) + 8
\end{itemize}
Prove that \(\forall x \in \mathbb{N} \), \textit{multiple}(x) = 4(2x - 1)

b) Now, let’s recall the RMSE function that we had encountered in Homework 1.
\(d_{\text{rmse},n} : ((\mathbb{R} \times \mathbb{R} \times \ldots \mathbb{R}), (\mathbb{R} \times \mathbb{R} \times \ldots \mathbb{R})) \rightarrow \mathbb{R} \)
\begin{itemize}
 \item \textbf{Basis Step:} \(d_{\text{rmse},1}(x, y) = |x_1 - y_1| \)
 \item \textbf{Recursive Step:} \(d_{\text{rmse},n+1}(x, y) = \sqrt{\sum_{i=1}^{n+1} (x_i - y_i)^2} \)
\end{itemize}
Prove that \(\forall n \in \mathbb{N} \), \([d_{\text{rmse},n}((x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n))] = \sqrt{\frac{\sum_{i=1}^{n} (x_i - y_i)^2}{n}} \)

\textbf{Solution:}
\begin{itemize}
 \item \textbf{a)} We need to prove by induction for the function \textit{multiple}:
 \(\forall x \in \mathbb{N} \), \textit{multiple}(x) = 4(2x - 1) \)
 \begin{itemize}
 \item \textit{Basis Step:} \(x = 1 \)
 \item \textit{In this case:} \textit{multiple}(1) = 4
 \item Also, 4(2x - 1) = 4(2 - 1) = 4
 \end{itemize}
 \textit{Inductive Step:} We assume that for an arbitrary integer \(k \in \mathbb{Z} \),
 \textit{multiple}(k) = 4(2k - 1). We need to prove that
 \textit{multiple}(k + 1) = 4(2(k + 1) - 1) = 4(2k + 2 - 1) = 4(2k + 1)
 \textit{Recall, from the definition of the function} \textit{multiple}(k + 1) = \textit{multiple}(k) + 8
 \textit{Therefore, using the induction assumption, we can re-write this as:
 \textit{multiple}(k + 1) = 4(2k - 1) + 8 = 8k - 4 + 8 = 8k + 4 = 4(2k + 1) = \textit{RHS}
 \textit{Hence, proved.}
 \end{itemize}
 \item \textbf{b)} We will again use the induction hypothesis on the function
 \(d_{\text{rmse},n} : ((\mathbb{R} \times \mathbb{R} \times \ldots \mathbb{R}), (\mathbb{R} \times \mathbb{R} \times \ldots \mathbb{R})) \rightarrow \mathbb{R} \) to show:
 \(\forall n \in \mathbb{N} \), \[d_{\text{rmse},n}((x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n)) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - y_i)^2}{n}} \]
 \textit{Basis Step:} \(d(x_1, y_1) = \sqrt{\frac{\sum_{i=1}^{1} (x_i - y_i)^2}{1}} = \sqrt{(x_1 - y_1)^2} = |(x_1 - y_1)| \), which is the definition of
 the function.
Recursive Step: We assume that for an arbitrary integer \(k \in Z \),

\[
d_{rmse,k}((x_1, x_2, \ldots, x_k), (y_1, y_2, \ldots, y_k)) = \sqrt{\frac{1}{k} \sum_{i=1}^{k} (x_i - y_i)^2}
\]

We need to prove that:

\[
d_{rmse,k+1}((x_1, x_2, \ldots, x_{k+1}), (y_1, y_2, \ldots, y_{k+1})) = \sqrt{\frac{1}{k+1} \sum_{i=1}^{k+1} (x_i - y_i)^2}
\]

From the definition of the function, we can write:

\[
d_{rmse,k+1}((x_1, x_2, \ldots, x_{k+1}), (y_1, y_2, \ldots, y_{k+1})) = \sqrt{\frac{k \cdot d_{rmse}(x_i, y_i)^2 + (x_{k+1} - y_{k+1})^2}{k+1}}
\]

Applying the induction assumption, we get:

\[
d_{rmse,k+1}((x_1, x_2, \ldots, x_{k+1}), (y_1, y_2, \ldots, y_{k+1})) = \sqrt{\frac{k \cdot \left(\frac{1}{k} \sum_{i=1}^{k} (x_i - y_i)^2 \right) + (x_{k+1} - y_{k+1})^2}{k+1}}
\]

Now,

\[
\left[d_{rmse,k}((x_1, x_2, \ldots, x_k), (y_1, y_2, \ldots, y_k)) \right]^2 = \frac{\sum_{i=1}^{k} (x_i - y_i)^2}{k}
\]

\[
\Rightarrow k \times \left[d_{rmse,k}((x_1, x_2, \ldots, x_k), (y_1, y_2, \ldots, y_k)) \right]^2 = \sum_{i=1}^{k} (x_i - y_i)^2
\]

\[
\Rightarrow \sqrt{\frac{k \cdot \left(\frac{1}{k} \sum_{i=1}^{k} (x_i - y_i)^2 \right) + (x_{k+1} - y_{k+1})^2}{k+1}} = \sqrt{\frac{\sum_{i=1}^{k} (x_i - y_i)^2}{k}} + (x_{k+1} - y_{k+1})^2 = RHS
\]

Hence Proved

Problem 6 - Bonus (20 points)

Let us assume that we have the same linked list \(L \) as provided in class:

Basis Step: \([\] \in L \)

Recursive Step: If \(l \in L \), and \(n \in N \), then \((n,l) \in L \)

a) Define a function *least*, which computes and returns the smallest data element in the node of the linked list (i.e., the smallest element across all nodes. E.g- \((4, (1, (3, []))) \) has the smallest element 1).

b) Define a function *average* that computes the mean of all data elements in the linked list. In the definition of your function, you can use any of the functions *nodes, sum or length* defined in Problem 4.

Solution:

a) We will use a recursively defined function here, similar to how we calculated the length and sum of the linked list:

\(\text{least} : L \rightarrow N \)

Basis Step: \(\text{least}([\]) = -1 \)

Recursive Step: If \(l \in L \), \(n \in N \), then

\(\text{min} = \text{least}(l) \)
if \(n \leq \min \) or \(\min = -1 \), then \(\text{least}(n, l) = n \)

else if \(\min \leq n \) and and \(\min \neq -1 \), then \(\text{least}(n, l) = \min \)

b) There are several possible solutions to this question

\[
\text{average} : L \rightarrow N
\]

\[
\text{Basis Step} : \text{average}([]) = 0
\]

\[
\text{Recursive Step} : \text{If } l \in L, n \in N, \text{ then } \]

\[
\text{average}(n, l) = \frac{\text{average}(l' + n + \text{length}(l))}{\text{length}(n, l)}
\]

Note: You can avoid recursion altogether here and simply define the function as:

\[
\text{average} : L \rightarrow N
\]

\[
\text{average}(l') = \frac{\text{sum}(l')}{\text{length}(l')} \text{ if } \text{length}(l') > 0
\]
\[
= 0 \text{ if } \text{length}(l') = 0
\]