For b an integer greater than 1 and n a positive integer, the **base b expansion of n** is $(a_{k-1} \cdots a_1a_0)_b$ where k is a positive integer, $a_0, a_1, \ldots, a_{k-1}$ are nonnegative integers less than b, $a_{k-1} \neq 0$, and $n = a_{k-1}b^{k-1} + \cdots + a_1b + a_0$.

For b an integer greater than 1, w a positive integer, and n a nonnegative integer with $n < b^w$, the **base b fixed-width w expansion of n** is $(a_{w-1} \cdots a_1a_0)_{b,w}$ where $a_0, a_1, \ldots, a_{w-1}$ are nonnegative integers less than b and $n = a_{w-1}b^{w-1} + \cdots + a_1b + a_0$.

Representing negative integers in binary: Fix a positive integer width for the representation w, $w > 1$.

<table>
<thead>
<tr>
<th>To represent a positive integer n</th>
<th>To represent a negative integer $-n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0a_{w-2} \cdots a_0]{s,w}$, where $n = (a{w-2} \cdots a_0)_{2,w-1}$</td>
<td>$[1a_{w-2} \cdots a_0]{s,w}$, where $n = (a{w-2} \cdots a_0)_{2,w-1}$</td>
</tr>
<tr>
<td>Example $n = 17$, $w = 7$:</td>
<td>Example $-n = -17$, $w = 7$:</td>
</tr>
<tr>
<td>$[0a_{w-2} \cdots a_0]{2c,w}$, where $n = (a{w-2} \cdots a_0)_{2,w-1}$</td>
<td>$[1a_{w-2} \cdots a_0]{2c,w}$, where $2^{w-1} - n = (a{w-2} \cdots a_0)_{2,w-1}$</td>
</tr>
<tr>
<td>Example $n = 17$, $w = 7$:</td>
<td>Example $-n = -17$, $w = 7$:</td>
</tr>
<tr>
<td>$[0a_{w-2} \cdots a_0]{1c,w}$, where $n = (a{w-2} \cdots a_0)_{2,w-1}$</td>
<td>$[1\overline{a}{w-2} \cdots \overline{a}0]{1c,w}$, where $n = (a{w-2} \cdots a_0)_{2,w-1}$ and we define $\overline{0} = 1$ and $\overline{1} = 0$.</td>
</tr>
<tr>
<td>Example $n = 17$, $w = 7$:</td>
<td>Example $-n = -17$, $w = 7$:</td>
</tr>
</tbody>
</table>

Representing 0:
Fixed-width addition: adding one bit at time, using the usual column-by-column and carry arithmetic, and dropping the carry from the leftmost column so the result is the same width as the summands. *Does this give the right value for the sum?*

\[
\begin{array}{c}
(1\ 1\ 0\ 1\ 0\ 0)_{2,6} \\
+ (0\ 0\ 0\ 1\ 0\ 1)_{2,6}
\end{array}
\quad
\begin{array}{c}
[1\ 1\ 0\ 1\ 0\ 0]_{8,6} \\
+ [0\ 0\ 0\ 1\ 0\ 1]_{8,6}
\end{array}
\quad
\begin{array}{c}
[1\ 1\ 0\ 1\ 0\ 0]_{2c,6} \\
+ [0\ 0\ 0\ 1\ 0\ 1]_{2c,6}
\end{array}
\]

Extra example

\[
\begin{array}{c}
(1\ 1\ 0\ 1\ 0\ 0)_{2,6} \\
\times (0\ 0\ 0\ 1\ 0\ 1)_{2,6}
\end{array}
\quad
\begin{array}{c}
[1\ 1\ 0\ 1\ 0\ 0]_{8,6} \\
\times [0\ 0\ 0\ 1\ 0\ 1]_{8,6}
\end{array}
\quad
\begin{array}{c}
[1\ 1\ 0\ 1\ 0\ 0]_{2c,6} \\
\times [0\ 0\ 0\ 1\ 0\ 1]_{2c,6}
\end{array}
\]

Example digital circuit:

- Output when \(x = 1, y = 0, z = 0, w = 1\) is ____
- Output when \(x = 1, y = 1, z = 1, w = 1\) is ____
- Output when \(x = 0, y = 0, z = 0, w = 1\) is ____