Today's learning goals

- Trace an algorithm specified in pseudocode
- Define the base expansion of a positive integer, specifically decimal, binary, hexadecimal, and octal.
- Convert between expansions in different bases of a positive integer.
- Define and use the `div` and `mod` operators.
Learning goals

In the past two classes, when have we used numbers?
Integer representations

Different contexts call for different representations.

Base 10

Base 2
Base b expansion of n

Also known as positional representation of positive integers

Definition (Rosen p. 246) For b an integer greater than 1 and n a positive integer, the base b expansion of n is

$$(a_{k-1} \cdots a_1 a_0)_b$$

where k is a positive integer, $a_0, a_1, \ldots, a_{k-1}$ are nonnegative integers less than b, $a_{k-1} \neq 0$, and

$$n = a_{k-1}b^{k-1} + \cdots + a_1 b + a_0$$

Using the terminology from last class: the base b expansion of n is a string over the alphabet $\{x \in \mathbb{N} \mid x < b\}$ and whose leftmost character is nonzero.
Base b expansion

In what base **could** this expansion be (1401)?

A. Binary (base 2)
B. Octal (base 8)
C. Decimal (base 10)
D. Hexadecimal (base 16)
E. More than one of the above
Base b expansion

In what base could this expansion be (1401)?

A. Binary (base 2)

B. Octal (base 8)

C. Decimal (base 10)

D. Hexadecimal (base 16)

E. More than one of the above
Converting between bases

OUR FIELD HAS BEEN STRUGGLING WITH THIS PROBLEM FOR YEARS.

STRUGGLE NO MORE! I'M HERE TO SOLVE IT WITH ALGORITHMS!

SIX MONTHS LATER: WOW, THIS PROBLEM IS REALLY HARD.

YOU DON'T SAY.
Algorithm?

Finite sequence of precise instructions for solving problem.
Algorithm: Pseudocode

Finite sequence of precise instructions for solving problem.

```
procedure log(n: a positive integer)
    r := 0
    while n > 1
        r := r + 1
        n := n div 2
    return r {r holds the result of the log operation}
```

At the end of running \(\log(6) \) what values are in the variables \(r \) and \(n \)?

A. \(r = 6, n = 0 \)
B. \(r = 6, n = 6 \)
C. \(r = 2, n = 0 \)
D. \(r = 2, n = 1 \)
E. None of the above.
Algorithm: constructing base b expansion

Input n,b Output k, coefficients in expansion
• English description.

• Pseudocode.
Algorithm 1: constructing base b expansion

Input n, b Output k, coefficients in expansion

• English description.

 Initialize value remaining to be n
 Find biggest power of b that is less than or equal to value remaining.
 Increment appropriate coefficient.
 Update value remaining by subtract this power of b from it.
 Repeat until value remaining is 0.
Ternary representation of 17

A. \((17)_3\)
B. \((211)_3\)
C. \((122)_3\)
D. \((221)_3\)
E. \((112)_3\)
Algorithm 1: constructing base b expansion

Calculating base b expansion, from left

```plaintext
procedure baseb1(n,b: positive integers with b > 1)
v := n
k := logb(n,b) + 1
for i := 1 to k
  a_k-i := 0
while v ≥ b^k-i
  a_k-i := a_k-i + 1
  v := v - b^k-i
return (a_k-1, ..., a_0)\{(a_k-1 ... a_0)_b is the base b expansion of n\}
```

\(a_{k-1}\) is coefficient of biggest power of b that is less than n
Thus: k is 1 more than integer part of \(\log_b n\)
Algorithm 2: constructing base b expansion

Input \(n, b \) \hspace{1cm} **Output** \(k, \) coefficients in expansion

Idea: Find smallest digit first, then next smallest, etc.

…. but how?

Rosen p. 249
Theorem: For \(n \) an integer and \(d \) a positive integer, there are unique integers \(q \) and \(r \) with \(0 \leq r < d \) and \(n = dq + r \). Notation: \(q = n \div d \) and \(r = n \mod d \)

When \(k > 1 \)

\[
n = a_{k-1}b^{k-1} + \ldots + a_1b + a_0
\]

\[
n = b(a_{k-1}b^{k-2} + \ldots + a_1) + a_0
\]
Algorithm 2: constructing base b expansion

Input n, b
Output k, coefficients in expansion

Idea: Use \(n \mod b \) to compute least significant digit. Use \(n \div b \) to compute new integer whose expansion we need. Repeat.
Algorithm 2: constructing base b expansion

Calculating base b expansion, from right

1. procedure baseb2(n, b: positive integers with b > 1)
2. q := n
3. k := 0
4. while q ≠ 0
5. a_k := q mod b
6. q := q div b
7. k := k + 1
8. return (a_{k-1},...,a_0) \{(a_{k-1},...,a_0)_b \text{ is the base } b \text{ expansion of } n\}

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>q</th>
<th>k</th>
<th>a_k</th>
<th>q ≠ 0?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Representing more

- Base b expansions can express any **positive integers**

- What about
 - Zero?
 - negative integers?
 - rational numbers?
 - other real numbers?
For next time

• Read website carefully
 http://cseweb.ucsd.edu/classes/fa20/cse20-a/

• No pre-class reading for next lecture

There are 10 types of people in the world: those who understand ternary, those who don't, and those who mistake it for binary.