Today's learning goals and updates

- Identify and prove properties of relations
- Evaluate whether a given relation is an appropriate model for a given application
Clustering

Scenario: Good morning! You’re a user experience engineer at Netflix. A product goal is to design customized home pages for groups of users who have similar interests. Your manager tasks you with designing an algorithm for producing a clustering of users based on their movie interests, with the following constraints:

Definition: The set of movie ratings over \(n \) movies is \(R_n \), where each element of \(R_n \) is a \(n \)-tuple with each entry in the tuple one of \(\{-1, 0, 1\} \). The distance between two ratings is defined by \(d \):

\[
d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \sum_{1 \leq i \leq n} |x_i - y_i|
\]

\(U = \{r_1, r_2, \cdots, r_l\} \) is a set of user ratings, and \(U \subseteq R_5 \). Assume that each user represented by an element of \(U \) has a unique ratings tuple. A candidate clustering is \(C_1, \cdots, C_m \) that is a partition of \(U \): set of non-empty, disjoint subsets of \(U \) whose union equals \(U \). We compare candidate clusterings by computing a metric, e.g. min cluster density or average cluster density, where density relates number of ratings in a cluster with the maximum distance between them.
Partitions from relations
Partitions from relations

Definition: A binary relation E on U is an equivalence relation means it is reflexive, symmetric, and transitive.

$\forall x \in U (\underline{\quad})$, $\forall x \in U \forall y \in U (\underline{\quad})$, and $\forall x \in U \forall y \in U \forall z \in U (\underline{\quad})$

An equivalence class of an element $x \in U$ for an equivalence relation E on the set U is the set

$$[x]_E = \{s \in U | (x, s) \in E\}$$

The set of equivalence classes of E is $\{[x]_E | x \in U\}$.

A. $\{[x]_E | x \in U\} \in U$
B. $\{[x]_E | x \in U\} \subseteq U$
C. $\{[x]_E | x \in U\} \in \mathcal{P}(U)$
D. $\{[x]_E | x \in U\} \subseteq \mathcal{P}(U)$
E. None of the above.
Partitions from relations

Theorem: Given an equivalence relation E on set $U,$ $\{[x]_E \mid x \in U\}$ is a partition of $U.$

Set of nonempty disjoint subsets of U whose union is $U.$
Partitions from relations

Theorem: Given an equivalence relation E on set U, $\{[x]_E \mid x \in U\}$ is a partition of U.

- To show: For each $a \in U$, $[a]_E \neq \emptyset$, and for each $a \in U$, there is some $b \in U$ such that $a \in [b]_E$.

- To show: For each $a, b \in U$, $((a, b) \in E) \rightarrow ([a]_E = [b]_E)$

- To show: For each $a, b \in U$, $((a, b) \notin E) \rightarrow ([a]_E \cap [b]_E = \emptyset)$
Partitions from relations

- To show: For each $a \in U$, $[a]_E \neq \emptyset$, and for each $a \in U$, there is some $b \in U$ such that $a \in [b]_E$.
Partitions from relations

- To show: For each $a, b \in U$, $(a, b) \in E \rightarrow ([a]_E = [b]_E)$
Partitions from relations

- To show: For each \(a, b \in U \), \((a, b) \notin E \) \(\rightarrow \) \([a]_E \cap [b]_E = \emptyset \)
Relations on U

\[E_{proj} = \{(x_1, x_2, x_3, x_4, x_5), (y_1, y_2, y_3, y_4, y_5) \in U \times U \mid (x_1 = y_1) \land (x_2 = y_2) \land (x_3 = y_3)\} \]

\[E_{dist} = \{(u, v) \in U \times U \mid d(u, v) \leq 2\} \]

\[E_{circ} = \{(u, v) \in U \times U \mid d((0, 0, 0, 0, 0), u) = d((0, 0, 0, 0, 0), v)\} \]

\[d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \sum_{1 \leq i \leq n} |x_i - y_i| \]

A. \((0, 1, -1, 0, 1), (1, 1, -1, 0, 0) \) \(\in E_{proj} \)

B. \((0, 1, -1, 0, 1), (1, 1, -1, 0, 0) \) \(\in E_{dist} \)

C. \((0, 1, -1, 0, 1), (1, 1, -1, 0, 0) \) \(\in E_{circ} \)

D. More than one of the above.

E. None of the above.
Relations on U

\[E_{proj} = \{(x_1, x_2, x_3, x_4, x_5), (y_1, y_2, y_3, y_4, y_5) \mid (x_1 = y_1) \land (x_2 = y_2) \land (x_3 = y_3)\} \]
\[E_{dist} = \{(u, v) \in U \times U \mid d(u, v) \leq 2\} \]
\[E_{circ} = \{(u, v) \in U \times U \mid d((0, 0, 0, 0, 0), u) = d((0, 0, 0, 0, 0), v)\} \]

Which of these relations is not an equivalence relation?

A. \(E_{proj} \)
B. \(E_{dist} \)
C. \(E_{circ} \)
D. More than one of the above.
E. None of the above.
Relations on U

$E_{proj} = \{(x_1, x_2, x_3, x_4, x_5), (y_1, y_2, y_3, y_4, y_5) \in U \times U \mid (x_1 = y_1) \land (x_2 = y_2) \land (x_3 = y_3)\}$

$E_{dist} = \{(u, v) \in U \times U \mid d(u, v) \leq 2\}$

$E_{circ} = \{(u, v) \in U \times U \mid d((0, 0, 0, 0, 0), u) = d((0, 0, 0, 0, 0), v)\}$

The partition of U defined by ____ is:
Relations on U

$E_{\text{proj}} = \{ (x_1, x_2, x_3, x_4, x_5), (y_1, y_2, y_3, y_4, y_5) \} \in U \times U \mid (x_1 = y_1) \land (x_2 = y_2) \land (x_3 = y_3) \}$

$E_{\text{dist}} = \{ (u, v) \in U \times U \mid d(u, v) \leq 2 \}$

$E_{\text{circ}} = \{ (u, v) \in U \times U \mid d((0, 0, 0, 0, 0), u) = d((0, 0, 0, 0, 0), v) \}$

The partition of U defined by ____ is:
Generating Clusters (Efficiently)

- CSE 150 series (AI & Machine Learning)
- This is a big, active research area!
Clustering