Recall: When A is a set, we say any subset of $A \times A$ is a (binary) relation on A. A relation R on a set A is called reflexive means $(a, a) \in R$ for every element $a \in A$. A relation R on a set A is called symmetric means $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. A relation R on a set A is called transitive means whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$. A relation is an equivalence relation means it is reflexive, symmetric, and transitive.

Definition: (Rosen 9.5) An equivalence class of an element $a \in A$ for an equivalence relation R on the set A is the set $\{s \in A|(a, s) \in R\}$. We write this as $[a]_R$.

Definition: Let $R_{(\text{mod } n)}$ be the set of all pairs of integers (a, b) such that $(a \ \text{mod } n = b \ \text{mod } n)$. We say a is congruent to $b \ \text{mod } n$ means $(a, b) \in R_{(\text{mod } n)}$. A common notation is to write this as $a \equiv b(\text{mod } n)$.

Modular arithmetic:

$$(102 + 48) \ \text{mod } 10 = \underline{\underline{}}$$

$$(7 \cdot 10) \ \text{mod } 5 = \underline{\underline{}}$$

$$(2^5) \ \text{mod } 3 = \underline{\underline{}}$$

Lemma (Section 4.1, page 241): For $a, b \in \mathbb{Z}$ and positive integer n, $(a, b) \in R_{(\text{mod } n)}$ if and only if $n|a - b$.

Lemma (Section 4.1 Theorem 5): For $a, b \in \mathbb{Z}$ and positive integer n, if $a \equiv b(\text{mod } n)$ and $c \equiv d(\text{mod } n)$ then $a + c \equiv b + d(\text{mod } n)$ and $ac \equiv bd(\text{mod } n)$. Informally: can bring mod “inside” and do it first, for addition and for multiplication.
Application: Cryptography

Definition: Let \(a \) be a positive integer and \(p \) be a large\(^1 \) prime number, both known to everyone. Let \(k_1 \) be a secret large number known only to person \(P_1 \) (Alice) and \(k_2 \) be a secret large number known only to person \(P_2 \) (Bob). Let the **Diffie-Helman shared key** for \(a, p, k_1, k_2 \) be \((a^{k_1} \cdot k_2 \mod p)\).

Idea: \(P_1 \) can quickly compute the Diffie-Helman shared key knowing only \(a, p, k_1 \) and the result of \(a^{k_2} \mod p \) (that is, \(P_1 \) can compute the shared key without knowing \(k_2 \), only \(a^{k_2} \mod p \)). Further, any person \(P_3 \) who knows neither \(k_1 \) nor \(k_2 \) (but may know any and all of the other values) cannot compute the shared secret efficiently.

Key Property: \(\forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \forall g \in \mathbb{Z}^+ \forall n \in \mathbb{Z}^+ ((g^a \mod n)^b, (g^b \mod n)^a) \in R_{(\mod n)} \)

Modular Exponentation: Algorithm 5 in Section 4.2 (page 254)

\begin{verbatim}
1 procedure modular exponentiation(b: integer;
2 n = (a_{k-1}a_{k-2}...a_1a_0)_2, m: positive integers)
3 x := 1
4 power := b \mod m
5 for i:= 0 to k - 1
6 if a_i = 1 then x := (x • power) \mod m
7 power := (power • power) \mod m
8 return x \{x equals b^n \mod m\}
\end{verbatim}

Calculate \(3^8 \mod 7 \)

<table>
<thead>
<tr>
<th>Approach 1: Directly</th>
<th>Approach 2: Using Algorithm 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3^1 \mod 7 =)</td>
<td>(b =), (n =) (, k =), (m =) (i) (a_i) (x) (power) (b \mod m =)</td>
</tr>
<tr>
<td>(3^2 \mod 7 =)</td>
<td>(0) (1) (1 \ mod 7 =)</td>
</tr>
<tr>
<td>(3^3 \mod 7 =)</td>
<td>(1) (1) (1 \ mod 7 =)</td>
</tr>
<tr>
<td>(3^4 \mod 7 =)</td>
<td>(2) (1) (1 \ mod 7 =)</td>
</tr>
<tr>
<td>(3^5 \mod 7 =)</td>
<td>(3) (1) (1 \ mod 7 =)</td>
</tr>
<tr>
<td>(3^6 \mod 7 =)</td>
<td>| |</td>
</tr>
<tr>
<td>(3^7 \mod 7 =)</td>
<td>| |</td>
</tr>
<tr>
<td>(3^8 \mod 7 =)</td>
<td>| |</td>
</tr>
</tbody>
</table>

How many multiplication operations did we use? How many multiplication operations did we use?

\(^1\)We leave the definition of “large” vague here, but think hundreds of digits for practical applications. In practice, we also need a particular relationship between \(a \) and \(p \) to hold, which we leave out here. See more in Rosen, 4.6, p302.