Countable sets
A set A is finite means it is empty or it is the same size as $\{1, \ldots, n\}$ for some $n \in \mathbb{N}$.
A set A is countably infinite means it is the same size as \mathbb{N}.
A set A is countable means it is either finite or countably infinite.

Extra example Prove or disprove: There is a set Y, $\neg (|Y| = |Y \times Y|)$

Extra example Prove or disprove: There is a set Y, $\neg (|Y| = |\mathcal{P}(Y)|)$

\mathbb{N} and its power set
Example elements of \mathbb{N}

Example elements of $\mathcal{P}(\mathbb{N})$ Recall: For set A, its power set is $\mathcal{P}(A) = \{X \mid X \subseteq A\}$

Claim: $|\mathbb{N}| \leq |\mathcal{P}(\mathbb{N})|$
Claim: There is an uncountable set. Example: __________

Proof: By definition of countable, since __________ is not finite, to show is $|\mathbb{N}| \neq |\mathcal{P}(\mathbb{N})|$.

Rewriting using the definition of cardinality, to show is

Towards a proof by universal generalization, consider an arbitrary function $f : \mathbb{N} \to \mathcal{P}(\mathbb{N})$.

To show: f is not a bijection. It’s enough to show that f is not onto.

Rewriting using the definition of onto, to show:

\[\neg \forall B \in \mathcal{P}(\mathbb{N}) \exists a \in \mathbb{N} \ (f(a) = B) \]

. By logical equivalence, we can write this as an existential statement:

In search of a witness, define the following collection of nonnegative integers:

\[D_f = \{ n \in \mathbb{N} \mid n \notin f(n) \} \]

. By definition of power set, since all elements of D_f are in \mathbb{N}, $D_f \in \mathcal{P}(\mathbb{N})$. It’s enough to prove the following Lemma:

Lemma: $\forall a \in \mathbb{N} \ (f(a) \neq D_f)$.

Proof of lemma:

By the Lemma, we have proved that f is not onto, and since f was arbitrary, there are no onto functions from \mathbb{N} to $\mathcal{P}(\mathbb{N})$. QED

Where does D_f come from? The idea is to build a set that would “disagree” with each of the images of f about some element.

<table>
<thead>
<tr>
<th>$n \in \mathbb{N}$</th>
<th>$f(n) = X_n$</th>
<th>Is $0 \in X_n$?</th>
<th>Is $1 \in X_n$?</th>
<th>Is $2 \in X_n$?</th>
<th>Is $3 \in X_n$?</th>
<th>Is $4 \in X_n$?</th>
<th>...</th>
<th>Is $n \in D_f$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$f(0) = X_0$</td>
<td>Y / N</td>
<td>N / Y</td>
</tr>
<tr>
<td>1</td>
<td>$f(1) = X_1$</td>
<td>Y / N</td>
<td>N / Y</td>
</tr>
<tr>
<td>2</td>
<td>$f(2) = X_2$</td>
<td>Y / N</td>
<td>N / Y</td>
</tr>
<tr>
<td>3</td>
<td>$f(3) = X_3$</td>
<td>Y / N</td>
<td>N / Y</td>
</tr>
<tr>
<td>4</td>
<td>$f(4) = X_4$</td>
<td>Y / N</td>
<td>N / Y</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>