CSE 258 – Lecture 7
Web Mining and Recommender Systems

Recommender Systems
Announcements

- Assignment 1 is out
- It will be due in week 8 on Monday at 5pm
- HW3 will help you set up an initial solution
Why recommendation?

The goal of recommender systems is...

- To help people discover new content
Why recommendation?

The goal of recommender systems is...

• To help us find the content we were already looking for

Are these recommendations good or bad?
Why recommendation?

The goal of recommender systems is...

- To discover which things go together
Why recommendation?

The goal of recommender systems is...

- To personalize user experiences in response to user feedback
Why recommendation?

The goal of recommender systems is...
• To recommend incredible products that are relevant to our interests
Why recommendation?

The goal of recommender systems is...

• To identify things that we like
Why recommendation?

The goal of recommender systems is...

• To help people discover new content
• To help us find the content we were already looking for
• To discover which things go together
• To personalize user experiences in response to user feedback
• To identify things that we like

To **model** people’s preferences, opinions, and behavior
Recommending things to people

Suppose we want to build a movie recommender

e.g. which of these films will I rate highest?
We already have a few tools in our “supervised learning” toolbox that may help us

\[f(\text{user features, movie features}) \rightarrow \text{star rating} \]
Recommending things to people

\[f(\text{user features, movie features}) \rightarrow \text{star rating} \]

Movie features: genre, actors, rating, length, etc.

User features: age, gender, location, etc.

Product Details

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genres</td>
<td>Science Fiction, Action, Horror</td>
</tr>
<tr>
<td>Director</td>
<td>David Twohy</td>
</tr>
<tr>
<td>Starring</td>
<td>Vin Diesel, Radha Mitchell</td>
</tr>
<tr>
<td>Supporting actors</td>
<td>Cole Hauser, Keith David, Lewis Fitz-Gerald, Claudia Black, Rhiana G, Angela Moore, Peter Chiang, Ken Twohy</td>
</tr>
<tr>
<td>Studio</td>
<td>NBC Universal</td>
</tr>
<tr>
<td>MPAA rating</td>
<td>R (Restricted)</td>
</tr>
<tr>
<td>Captions and subtitles</td>
<td>English Details ▼</td>
</tr>
<tr>
<td>Rental rights</td>
<td>24 hour viewing period. Details ▼</td>
</tr>
<tr>
<td>Purchase rights</td>
<td>Stream instantly, and download to 2 locations Details ▼</td>
</tr>
<tr>
<td>Format</td>
<td>Amazon Instant Video (streaming online video and digital download)</td>
</tr>
</tbody>
</table>

A. Phillips

Reviewer ranking: #17,230,554

90% helpful votes received on reviews (151 of 167)

ABOUT ME

Enjoy the reviews...

ACTIVITIES

- Reviews (16)
- Public Wish List (2)
- Listmania Lists (2)
- Tagged Items (1)
Recommending things to people

\[f(\text{user features, movie features}) \rightarrow \text{star rating} \]

With the models we’ve seen so far, we can build predictors that account for...

- Do women give higher ratings than men?
- Do Americans give higher ratings than Australians?
- Do people give higher ratings to action movies?
- Are ratings higher in the summer or winter?
- Do people give high ratings to movies with Vin Diesel?

So what can’t we do yet?
Recommending things to people

\[f(\text{user features, movie features}) \rightarrow \text{star rating} \]

Consider the following linear predictor (e.g. from week 1):

\[f(\text{user features, movie features}) = \langle \phi(\text{user features}); \phi(\text{movie features}), \theta \rangle \]

\[= \langle \phi(\text{user}), \Theta_{\text{user}} \rangle + \langle \phi(\text{movie}), \Theta_{\text{movie}} \rangle \]
But this is essentially just two separate predictors!

\[f(\text{user features, movie features}) = \]
\[= \langle \phi(\text{user features}), \theta_{\text{user}} \rangle + \langle \phi(\text{movie features}), \theta_{\text{movie}} \rangle \]

That is, we’re treating user and movie features as though they’re independent!
Recommending things to people

But these predictors should (obviously?) **not** be independent

\[f(\text{user features, movie features}) = f(\text{user}) + f(\text{movie}) \]

- do I tend to give high ratings?
- does the population tend to give high ratings to this genre of movie?

But what about a feature like “do I give high ratings to **this genre** of movie”?
Recommending things to people

Recommender Systems go beyond the methods we’ve seen so far by trying to model the **relationships** between people and the items they’re evaluating.

- **Preference** toward “action”
- **Preference** toward “special effects”

Compatibility

- Is the movie action-heavy?
- Are the special effects good?
Today

Recommender Systems
1. Collaborative filtering
 (performs recommendation in terms of user/user and item/item similarity)
2. Assignment 1
3. (next lecture) Latent-factor models
 (performs recommendation by projecting users and items into some low-dimensional space)
4. (next lecture) The Netflix Prize
Defining similarity between users & items

Q: How can we measure the similarity between two users?

A: In terms of the items they purchased!

Q: How can we measure the similarity between two items?

A: In terms of the users who purchased them!
Defining similarity between users & items

e.g.: Amazon
Definitions

\[I_u = \text{set of items purchased by user } u \]
\[U_i = \text{set of users who purchased item } i \]
Definitions

Or equivalently...

\[R = \left(\begin{array}{cccc} 1 & 0 & \cdots & 1 \\ 0 & 0 & & 1 \\ & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 1 \end{array} \right) \]

\(R_u \) = binary representation of items purchased by \(u \)

\(R_{\cdot, i} \) = binary representation of users who purchased \(i \)

\[I_u = \{ i \mid R_{ui} = 1 \} \quad U_i = \{ u \mid R_u i = 1 \} \]
0. Euclidean distance

Euclidean distance:
e.g. between two items i,j (similarly defined between two users)

$$|U_i \setminus U_j| + |U_j \setminus U_i| = \|R_i - R_j\|$$
0. Euclidean distance

Euclidean distance:

e.g.: $U_1 = \{1,4,8,9,11,23,25,34\}$
$U_2 = \{1,4,6,8,9,11,23,25,34,35,38\}$
$U_3 = \{4\}$
$U_4 = \{5\}$

$$|U_1 \setminus U_2| + |U_2 \setminus U_1| = 3$$
$$|U_3 \setminus U_4| + |U_3 \setminus U_4| = 2$$

Problem: favors small sets, even if they have few elements in common
1. Jaccard similarity

Jaccard\((A, B)\) = \[\frac{|A \cap B|}{|A \cup B|}\]

Jaccard\((U_i, U_j)\) = \[\frac{|u_i \cap u_j|}{|u_i \cup u_j|}\]

→ Maximum of 1 if the two users purchased exactly the same set of items
(or if two items were purchased by the same set of users)

→ Minimum of 0 if the two users purchased completely disjoint sets of items
(or if the two items were purchased by completely disjoint sets of users)
2. Cosine similarity

$U_{harry\ potter}$

(vector representation of users who purchased harry potter)

$U_{\text{pitch\ black}}$

$\langle 1, 0, 1 \rangle$

$\langle 0, 1, 1 \rangle$

θ

$\cos(\theta) = 1$

(theta = 0) \rightarrow A and B point in exactly the same direction

$\cos(\theta) = -1$

(theta = 180) \rightarrow A and B point in opposite directions (won’t actually happen for 0/1 vectors)

$\cos(\theta) = 0$

(theta = 90) \rightarrow A and B are orthogonal

$\Theta = \cos^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}\right)$

$\cos \Theta = \frac{\mathbf{u}_i \cdot \mathbf{u}_j}{\|\mathbf{u}_i\| \|\mathbf{u}_j\|}$

(binary) \rightarrow $\frac{\|\mathbf{u}_i \cdot \mathbf{u}_j\|}{\|\mathbf{u}_i\| \|\mathbf{u}_j\|}$
2. Cosine similarity

Why cosine?

• Unlike Jaccard, works for arbitrary vectors
• E.g. what if we have **opinions** in addition to purchases?

$$R = \begin{pmatrix}
1 & 0 & \ldots & 1 \\
0 & 0 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \ldots & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-1 & 0 & \ldots & 1 \\
0 & 0 & \ldots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \ldots & -1
\end{pmatrix}$$

bought and **liked**
didn’t buy
bought and **hated**
2. Cosine similarity

E.g. our previous example, now with “thumbs-up/thumbs-down” ratings

\[\cos(\theta) = 1 \]
(theta = 0) → Rated by the same users, and they all agree

\[\cos(\theta) = -1 \]
(theta = 180) → Rated by the same users, but they completely disagree about it

\[\cos(\theta) = 0 \]
(theta = 90) → Rated by different sets of users
4. Pearson correlation

What if we have numerical ratings (rather than just thumbs-up/down)?

\[R = \begin{pmatrix}
-1 & 0 & \cdots & 1 \\
0 & 0 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & -1
\end{pmatrix} \rightarrow \begin{pmatrix}
4 & 0 & \cdots & 2 \\
0 & 0 & \cdots & 3 \\
\vdots & \vdots & \ddots & \vdots \\
5 & 0 & \cdots & 1
\end{pmatrix} \]

bought and **liked**

didn’t buy

bought and **hated**
4. Pearson correlation

What if we have numerical ratings (rather than just thumbs-up/down)?
4. Pearson correlation

What if we have numerical ratings (rather than just thumbs-up/down)?

• We wouldn’t want 1-star ratings to be parallel to 5-star ratings
• So we can subtract the average – values are then negative for below-average ratings and positive for above-average ratings

\[
\text{Sim}(u, v) = \frac{\sum_{i \in I_u \cap I_v} (R_u,i - \bar{R}_u)(R_v,i - \bar{R}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (R_u,i - \bar{R}_u)^2} \sqrt{\sum_{i \in I_u \cap I_v} (R_v,i - \bar{R}_v)^2}}
\]
4. Pearson correlation

Compare to the cosine similarity:

Pearson similarity (between users):

$$\text{Sim}(u, v) = \frac{\sum_{i \in I_u \cap I_v} (R_{u,i} - \bar{R}_u)(R_{v,i} - \bar{R}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (R_{u,i} - \bar{R}_u)^2} \sqrt{\sum_{i \in I_u \cap I_v} (R_{v,i} - \bar{R}_v)^2}}$$

Cosine similarity (between users):

$$\text{Sim}(u, v) = \frac{\sum_{i \in I_u \cap I_v} R_{u,i} R_{v,i}}{\sqrt{\sum_{i \in I_u \cap I_v} R_{u,i}^2} \sqrt{\sum_{i \in I_u \cap I_v} R_{v,i}^2}}$$
How does Amazon generate their recommendations?

Given a product:

Let U_i be the set of users who viewed it.

Rank products according to: $\frac{|U_i \cap U_j|}{|U_i \cup U_j|}$ (or cosine/pearson)

Linden, Smith, & York (2003)
Collaborative filtering in practice

Can also use similarity functions to estimate ratings:

\[r(u, i) = \frac{1}{\sum_{j \in I_u} \| u \| \cdot \| v \|} \sum_{j \in I_u} r_{u,j} \cdot \text{Sim}(i, j) \]

\[\| u \| = \sum_{j \in I_u} \| u_j \| \]

\[\| v \| = \sum_{j \in I_u} \| v_j \| \]
Collaborative filtering in practice

Note: (surprisingly) that we built something pretty useful out of **nothing but rating data** – we didn’t look at any features of the products whatsoever
But: we still have a few problems left to address...

1. This is actually kind of slow given a huge enough dataset – if one user purchases one item, this will change the rankings of every other item that was purchased by at least one user in common

2. Of no use for **new users** and **new items** ("cold-start" problems)

3. Won’t necessarily encourage diverse results
Questions
CSE 258 – Lecture 7
Web Mining and Recommender Systems

Similarity based recommender - implementation
Code on:
http://jmcauley.ucsd.edu/code/week4.py

Uses Amazon "Musical Instrument" data from
https://s3.amazonaws.com/amazon-reviews-pds/tsv/index.txt
Code: Reading the data

Read the data (slightly larger dataset than before):

```
In [1]:
import gzip
from collections import defaultdict
import random
import numpy
import scipy.optimize

In [2]:
path = "/home/jmcauley/datasets/mooc/amazon/amazon_reviews_us_Musical_Instruments_v1_00.tsv.gz"

In [3]:
f = gzip.open(path, 'rt', encoding="utf8")

In [4]:
header = f.readline()
header = header.strip().split('\t')
```
Our goal is to make recommendations of products based on users’ purchase histories. The only information needed to do so is **user and item IDs**.

```python
In [5]:
    dataset = []

In [6]:
    for line in f:
        fields = line.strip().split(' \t')
        d = dict(zip(header, fields))
        d['user_id'] = int(d['user_id'])
        d['item_id'] = int(d['item_id'])
        d['total_sales'] = int(d['total_sales'])
        dataset.append(d)

In [7]:
    dataset[0]

Out[7]:
    {'marketplace': 'US',
     'customer_id': '45610553',
     'review_id': 'RMD11111Y50Z9',
     'product_id': 'BOOH62V8F',
     'product_parent': '61821873',
     'product_title': 'AGPtek® 10 Isolated Output 9V 12V 18V Guitar Pedal Board Power Supply Effect Pedals with Isolated Short Cricuit / Overcurrent Protection'},
Build data structures representing the set of items for each user and users for each item:

```python
In [8]: # Useful data structures

In [9]: usersPerItem = defaultdict(set)
 ...: itemsPerUser = defaultdict(set)

In [10]: itemNames = {}

In [11]: for d in dataset:
 ...: user, item = d['customer_id'], d['product_id']
 ...: usersPerItem[item].add(user)
 ...: itemsPerUser[user].add(item)
 ...: itemNames[item] = d['product_title']
```
The Jaccard similarity implementation follows the definition directly:

\[
\text{Jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]

In [12]:
```python
def Jaccard(s1, s2):
 numer = len(s1.intersection(s2))
 denom = len(s1.union(s2))
 return numer / denom
```
Recommendation

We want a recommendation function that return **items similar to a candidate item i**. Our strategy will be as follows:

- Find the set of users who purchased $i$
- Iterate over all other items other than $i$
- For all other items, compute their similarity with $i$ (and store it)
- Sort all other items by (Jaccard) similarity
- Return the most similar
Now we can implement the recommendation function itself:

```
In [13]: def mostSimilar(i):
 similarities = []
 users = usersPerItem[i]
 for i2 in usersPerItem:
 if i2 == i: continue
 sim = Jaccard(users, usersPerItem[i2])
 similarities.append((sim,i2))
 similarities.sort(reverse=True)
 return similarities[:10]
```

\[ \text{Jaccard}(U_i, U_j) = \frac{|U_i \cap U_j|}{|U_i \cup U_j|} \]
Next, let’s use the code to make a recommendation. The query is just a product ID:

```
In [14]: dataset[2]

Out[14]: {'marketplace': 'US',
 'customer_id': '6111003',
 'review_id': 'RIZR67JUSDBI0',
 'product_id': 'B0006VMBHI',
 'product_parent': '603261968',
 'product_title': 'AudioQuest LP record clean brush',
 'product_category': 'Musical Instruments',
 'star_rating': 3,
 'helpful votes': 0,
 'total votes': 1,
 'vine': 'N',
 'verified_purchase': 'Y',
 'review headline': 'Three Stars',
 'review body': 'removes dust. does not clean',
 'review date': '2015-08-31'}
```

```
In [15]: query = dataset[2]["product_id"]
```
Next, let’s use the code to make a recommendation. The query is just a product ID:
Items that were recommended:

In [17]: itemNames[query]

Out[17]: 'AudioQuest LP record clean brush'

In [18]: [itemNames[x[1]] for x in mostSimilar(query)]

Out[18]: ['Shure SFG-2 Stylus Tracking Force Gauge',
    'Shure M97xE High-Performance Magnetic Phono Cartridge',
    'ART Pro Audio DJPRE II Phono Turntable Preamplifier',
    'Signstek Blue LCD Backlight Digital Long-Playing LP Turntable Stylus Force Scale Gauge Tester',
    'Audio Technica AT120E/T Standard Mount Phono Cartridge',
    'Technics: 45 Adaptor for Technics 1200 (SFWE010)',
    'GruvGlide GRUVGLIDE DJ Package',
    'STANTON MAGNETICS Record Cleaner Kit',
    'Shure M97xE High-Performance Magnetic Phono Cartridge',
    'Behringer PP400 Ultra Compact Phono Preamplifier']
Our implementation was not very efficient. The slowest component is the iteration over all other items:

- Find the set of users who purchased \( i \)
- **Iterate over all other items other than \( i \)**
- For all other items, compute their similarity with \( i \) *(and store it)*
- Sort all other items by (Jaccard) similarity
- Return the most similar

This can be done more efficiently as most items will have no overlap.
In fact it is sufficient to iterate over **those items purchased by one of the users who purchased** $i$

- Find the set of users who purchased $i$
- **Iterate over all users who purchased** $i$
- Build a candidate set from all items those users consumed
- For items in this set, compute their similarity with $i$ *(and store it)*
- Sort all other items by (Jaccard) similarity
- Return the most similar
Our more efficient implementation works as follows:

```python
In [19]: def mostSimilarFast(i):
 similarities = []
 users = usersPerItem[i]
 candidateItems = set()
 for u in users:
 candidateItems = candidateItems.union(itemsPerUser[u])
 for i2 in candidateItems:
 if i2 == i: continue
 sim = Jaccard(users, usersPerItem[i2])
 similarities.append((sim,i2))
 similarities.sort(reverse=True)
 return similarities[:10]
```
Which ought to recommend the same set of items, but **much** more quickly:

```
In [20]: mostSimilarFast(query)
Out[20]: [(0.028446389496717725, 'B00006I5SD'),
 (0.01694915254237288, 'B00006I5SB'),
 (0.015065913370998116, 'B000AJR482'),
 (0.014204545454545454, 'B00E7MVP3S'),
 (0.008955223880597015, 'B001255YL2'),
 (0.008849557522123894, 'B003EIRVO8'),
 (0.008333333333333333, 'B0015VEZ22'),
 (0.00821917808219178, 'B00006I5UH'),
 (0.008021390374331552, 'B0008BWM7'),
 (0.007656967840735069, 'B000H2BC4E')]```
Similarity based recommender for rating prediction
In the previous section we provided code to make recommendations based on the **Jaccard similarity**.

How can the same ideas be used for rating prediction?
A simple heuristic for rating prediction works as follows:

• The user \((u)\)'s rating for an item \(i\) is a weighted combination of all of their previous ratings for items \(j\)
• The weight for each rating is given by the Jaccard similarity between \(i\) and \(j\)
This can be written as:

\[r(u, i) = \frac{1}{Z} \sum_{j \in I_u \setminus \{i\}} r_{u,j} \cdot \text{sim}(i, j) \]

where

- \(Z = \sum_{j \in I_u \setminus \{i\}} \text{sim}(i, j) \)
- Normalization constant
- All items the user has rated other than \(i \)
Now we can adapt our previous recommendation code to predict ratings

```
In [22]: # More utility data structures

In [23]: reviewsPerUser = defaultdict(list)
   reviewsPerItem = defaultdict(list)

In [24]: for d in dataset:
   user, item = d['customer_id'], d['product_id']
   reviewsPerUser[user].append(d)
   reviewsPerItem[item].append(d)

In [25]: ratingMean = sum([d['star_rating'] for d in dataset]) / len(dataset)

In [26]: ratingMean
Out[26]: 4.251102772543146
```

We'll use the mean rating as a baseline for comparison.

List of reviews per user and per item.
Our rating prediction code works as follows:

```python
In [27]: def predictRating(user,item):
    ratings = []
    similarities = []
    for d in reviewsPerUser[user]:
        i2 = d['product_id']
        if i2 == item: continue
        ratings.append(d['star_rating'])
        similarities.append(Jaccard(usersPerItem[item],usersPerItem[i2]))
    if (sum(similarities) > 0):
        weightedRatings = [(x*y) for x,y in zip(ratings,similarities)]
        return sum(weightedRatings) / sum(similarities)
    else:
        # User hasn't rated any similar items
        return ratingMean
```

The formula for rating prediction is:

\[r(u, i) = \frac{1}{Z} \sum_{j \in I_u \setminus \{i\}} r_{u,j} \cdot \operatorname{sim}(i, j) \]
As an example, select a rating for prediction:

In [28]: dataset[1]

Out[28]: {'marketplace': 'US',
 'customer_id': '14640079',
 'review_id': 'RZSL0BALIYUNU',
 'product_id': 'B003LRN53I',
 'product_parent': '986692292',
 'product_title': 'Sennheiser HD203 Closed-Back DJ Headphones',
 'product_category': 'Musical Instruments',
 'star_rating': 5,
 'helpful_votes': 0,
 'total_votes': 0,
 'vine': 'N',
 'verified_purchase': 'Y',
 'review_headline': 'Five Stars',
 'review_body': 'Nice headphones at a reasonable price.',
 'review_date': '2015-08-31'}

In [29]: u, i = dataset[1]['customer_id'], dataset[1]['product_id']

In [30]: predict_rating(u, i)

Out[30]: 5.0
Similarly, we can evaluate accuracy across the entire corpus:

```python
In [31]: def MSE(predictions, labels):
    differences = [(x-y)**2 for x,y in zip(predictions,labels)]
    return sum(differences) / len(differences)

In [32]: alwaysPredictMean = [ratingMean for d in dataset]

In [33]: cfPredictions = [predictRating(d['customer_id'], d['product_id']) for d in dataset]

In [34]: labels = [d['star_rating'] for d in dataset]

In [35]: MSE(alwaysPredictMean, labels)
Out[35]: 1.4796142779564334

In [36]: MSE(cfPredictions, labels)
Out[36]: 1.6146130004291603
```
Note that this is just a **heuristic** for rating prediction

• In fact in this case it did *worse* (in terms of the MSE) than always predicting the mean
 • We could adapt this to use:
 1. A different similarity function (e.g. cosine)
 2. Similarity based on users rather than items
 3. A different weighting scheme
Questions?