CSE 258 — Lecture 2 Web Mining and Recommender Systems

Supervised learning – Regression

Supervised versus unsupervised learning

Learning approaches attempt to model data in order to solve a problem

Unsupervised learning approaches find patterns/relationships/structure in data, but **are not** optimized to solve a particular predictive task

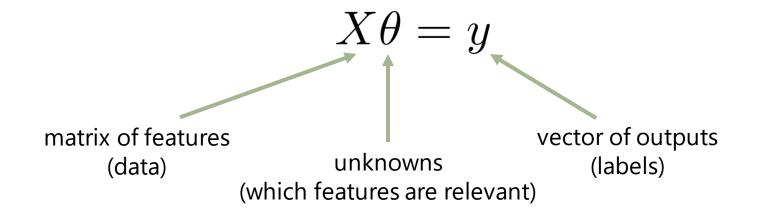
Supervised learning aims to directly model the relationship between input and output variables, so that the output variables can be predicted accurately given the input

Regression

Regression is one of the simplest supervised learning approaches to learn relationships between input variables (features) and output variables (predictions)

Linear regression

Linear regression assumes a predictor of the form



(or Ax = b if you prefer)

Linear regression

Linear regression assumes a predictor of the form

$$X\theta = y$$

Q: Solve for theta **A:** $\theta = (X^T X)^{-1} X^T y$

Example 1

Beeradvocate

Beers:

world-class 9,587 Ratings (view ratings) Brewed by:

Goose Island Beer Co. Illinois, United States

BA SCORE

100

world-class

Style | ABV American Double / Imperial Stout | 13.80% ABV

THE BROS

95

Ratings: 9,587 Reviews: 2,537

rAvg: 4.59

pDev: 9.59% Wants: 2,109

Gots: 4,563 | FT: 472

Availability: Winter

Notes/Commercial Description: 60 IBU

(Beer added by: drewbage on 06-26-2003)

Displayed for educational use only; do not reuse.

Ratings/reviews:

4.35/5 rDev -5.2% look: 4 | smell: 4.25 | taste: 4.5 | feel: 4.25 | overall: 4.25

Serving: 355 mL bottle poured into a 9 oz Libbey Embassy snifter ("bottled on: 08AUG14 1109").

Appearance: Deep, dark near-black brown. Hazy, light brown fringe of foam and limited lacing; no head.

Smell: Roasted malt, vanilla, and some warming alcohol.

Taste: Roasted malts, cocoa, burnt caramel, molasses, vanilla and dark fruit. Bourbon barrel is hinted at but never takes over.

Mouthfeel: Medium to full body and light carbonation with a very lush, silky smooth feel.

Overall: Not as complex or intense as some newer barrel-aged stouts, but so smooth and balanced with all the elements tightly integrated.

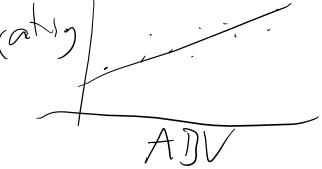
HipCzech, Yesterday at 05:38 AM

	HipCzech Aficionado Male, from Texas Profile Page			⊗
8	Member Since: Points: Beers: Places: Posts: Uikes Received: Trading:		HipCzech was last seen: Today at 12:19 AM	

50,000 reviews are available on http://jmcauley.ucsd.edu/cse258/data/beer/beer_50000.json (see course webpage)

Real-valued features

How do preferences toward certain beers vary with age? How about **ABV**?



(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

Example 1.5: Polynomial functions

What about something like ABV^2?

rating = $\theta_0 + \theta_1 \times ABV + \theta_2 \times ABV^2 + \theta_3 \times ABV^3$

- Note that this is perfectly straightforward: the model still takes the form weight $\neq \theta \cdot x$
- We just need to use the feature vector

 $x = [1, ABV, ABV^{2}, ABV^{3}]$

Fitting complex functions

Note that we can use the same approach to fit arbitrary functions of the features! E.g.:

Rating = $\theta_0 + \theta_1 \times ABV + \theta_2 \times ABV^2 + \theta_3 \exp(ABV) + \theta_4 \sin(ABV)$

 We can perform arbitrary combinations of the features and the model will still be linear in the parameters (theta):

$$Rating = \theta \cdot x$$

Fitting complex functions

The same approach would **not** work if we wanted to transform the parameters:

Rating = $\theta_0 + \theta_1 \times ABV + \theta_2^2 \times ABV + \sigma(\theta_3) \times ABV$

- The **linear** models we've seen so far do not support these types of transformations (i.e., they need to be linear in their parameters)
- There *are* alternative models that support non-linear transformations of parameters, e.g. neural networks

Categorical features

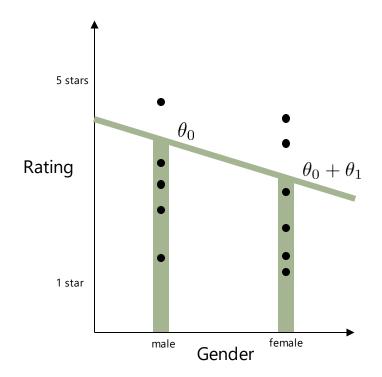
How do beer preferences vary as a function of **gender**?

(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

Example 2



Example 2



 θ_0 is the (predicted/average) rating for males

 θ_1 is the **how much higher** females rate than males (in this case a negative number)

We're really still fitting a line though!

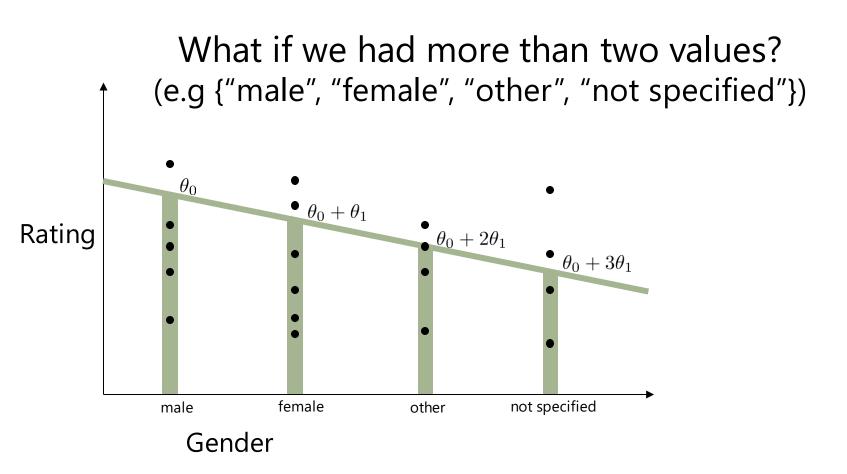
 $rathy = O_0 + O_1 \times [is F]$ X (1,0) formales (1,1) forfingle

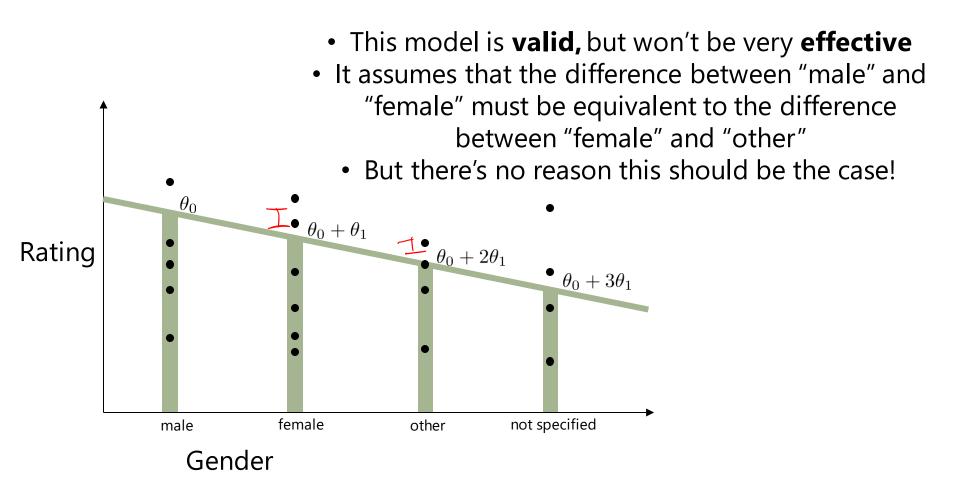
What if we had more than two values? (e.g {"male", "female", "other", "not specified"}) Could we apply the same approach?

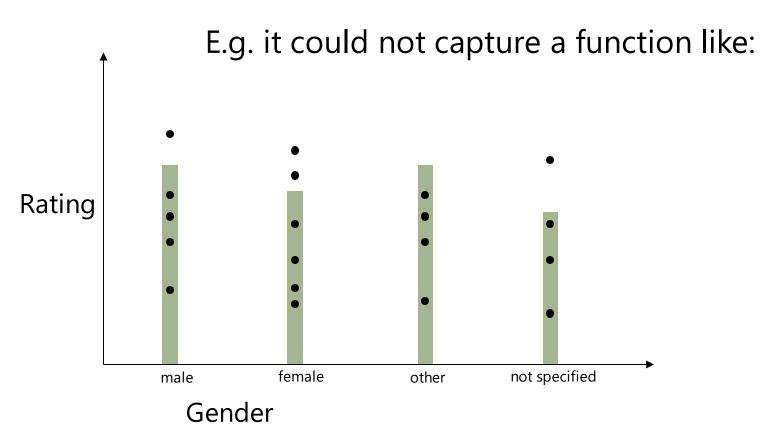
Rating = $\theta_0 + \theta_1 \times \text{gender}$

gender = 0 if "male", 1 if "female", 2 if "other", 3 if "not specified"

Rating = θ_0 if male Rating = $\theta_0 + \theta_1$ if female Rating = $\theta_0 + 2\theta_1$ if other Rating = $\theta_0 + 3\theta_1$ if not specified







Instead we need something like:

Rating $= \theta_0$ if male Rating $= \theta_0 + \theta_1$ if female Rating $= \theta_0 + \theta_2$ if other Rating $= \theta_0 + \theta_3$ if not specified

This is equivalent to:

 $(\theta_0, \theta_1, \theta_2, \theta_3) \cdot (1; \text{feature})$

where feature = [1, 0, 0] for "female" feature = [0, 1, 0] for "other" feature = [0, 0, 1] for "not specified"

Concept: One-hot encodings

feature = [1, 0, 0] for "female" feature = [0, 1, 0] for "other" feature = [0, 0, 1] for "not specified"

- This type of encoding is called a **one-hot encoding** (because we have a feature vector with only a single "1" entry)
- Note that to capture 4 possible categories, we only need three dimensions (a dimension for "male" would be redundant)
- This approach can be used to capture a variety of categorical feature types, as well as objects that belong to multiple categories

Linearly dependent features

Linearly dependent features

$$rating = 2 + 2(if n) + J(if F)$$

= $1000 - 997(if n) - 995(if F)$

How would you build a feature to represent the **month**, and the impact it has on people's rating behavior?

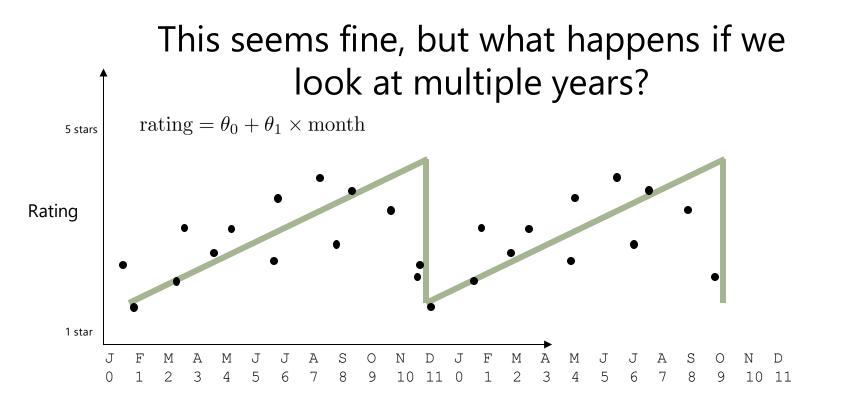
E.g. How do **ratings** vary with **time**?

- In principle this picture looks okay (compared our previous example on categorical features) we're predicting a **real valued** quantity from **real valued** data (assuming we convert the date string to a number)
- So, what would happen if (e.g. we tried to train a predictor based on the month of the year)?

E.g. How do **ratings** vary with **time**?

• Let's start with a simple feature representation, e.g. map the month name to a month number:

rating
$$= \theta_0 + \theta_1 \times \text{month}$$
 where $\begin{bmatrix} \text{Jan} = [0] \\ \text{Feb} = [1] \\ \text{Mar} = [2] \\ \text{etc.} \end{bmatrix}$

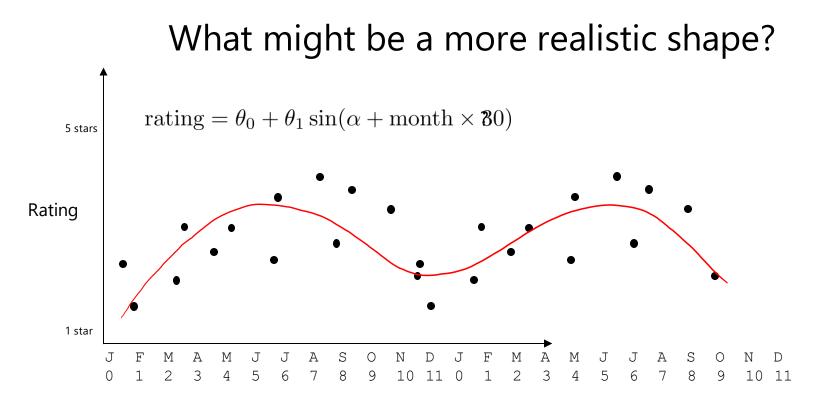


Modeling temporal data

This seems fine, but what happens if we look at multiple years?

- This representation implies that the model would "wrap around" on December 31 to its January 1st value.
- This type of "sawtooth" pattern probably isn't very realistic

Modeling temporal data

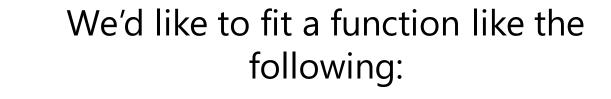


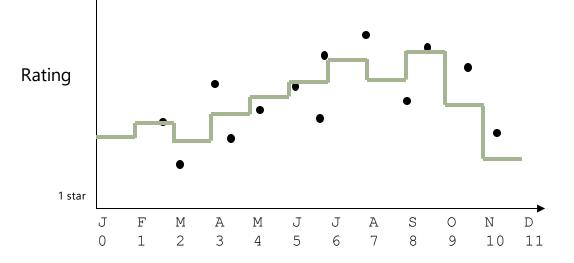
Modeling temporal data

Fitting some periodic function like a sin wave would be a valid solution, but is difficult to get right, and fairly inflexible

- Also, it's not a **linear model**
- **Q:** What's a class of functions that we can use to capture a more flexible variety of shapes?
- **A:** Piecewise functions!

Concept: Fitting piecewise functions





5 stars

Fitting piecewise functions

In fact this is very easy, even for a linear model! This function looks like:

rating =
$$\theta_0 + \theta_1 \times \delta(\text{is Feb}) + \theta_2 \times \delta(\text{is Mar}) + \theta_3 \times \delta(\text{is Apr}) \cdots$$

1 if it's Feb, 0
otherwise

- Note that we don't need a feature for January
- i.e., theta_0 captures the January value, theta_0 captures the *difference* between February and January, etc.

Fitting piecewise functions

Or equivalently we'd have features as follows:

 $rating = \theta \cdot x \quad \text{where} \quad$

Fitting piecewise functions

Note that this is still a form of **one-hot** encoding, just like we saw in the "categorical features" example

- This type of feature is very flexible, as it can handle complex shapes, periodicity, etc.
- We could easily increase (or decrease) the resolution to a week, or an entire season, rather than a month, depending on how fine-grained our data was

Concept: Combining one-hot encodings

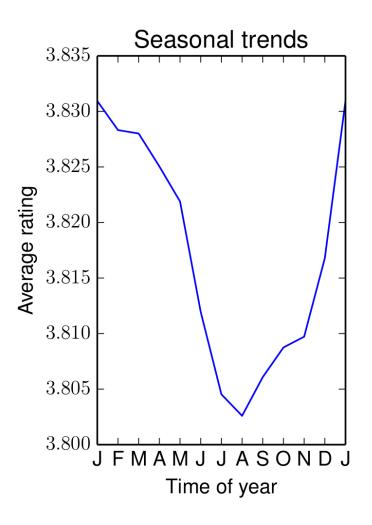
We can also extend this by combining several one-hot encodings together:

rating = $\theta \cdot x = \theta \cdot [x_1; x_2]$ where

• •

What does the data actually look like?

Season vs. rating (overall)



Random features

What happens as we add more and more **random** features?

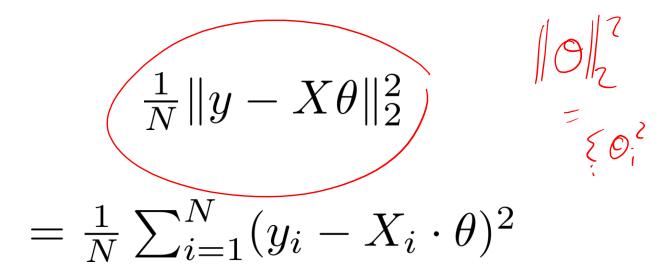
(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

CSE 258 — Lecture 2 Web Mining and Recommender Systems

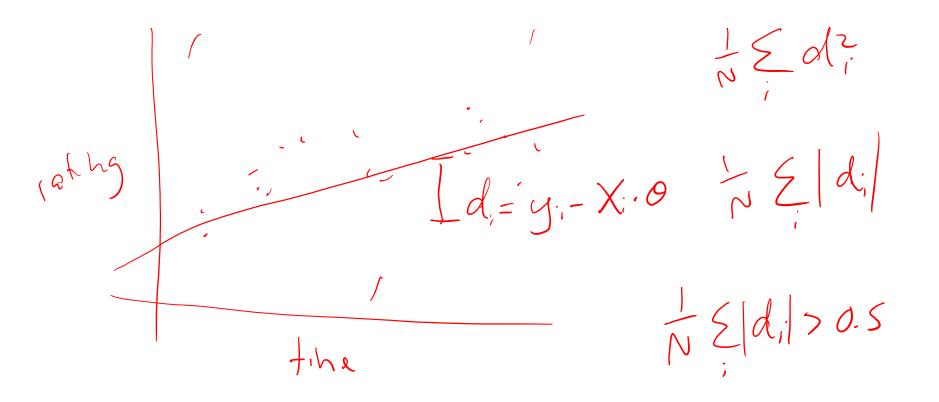
Regression Diagnostics

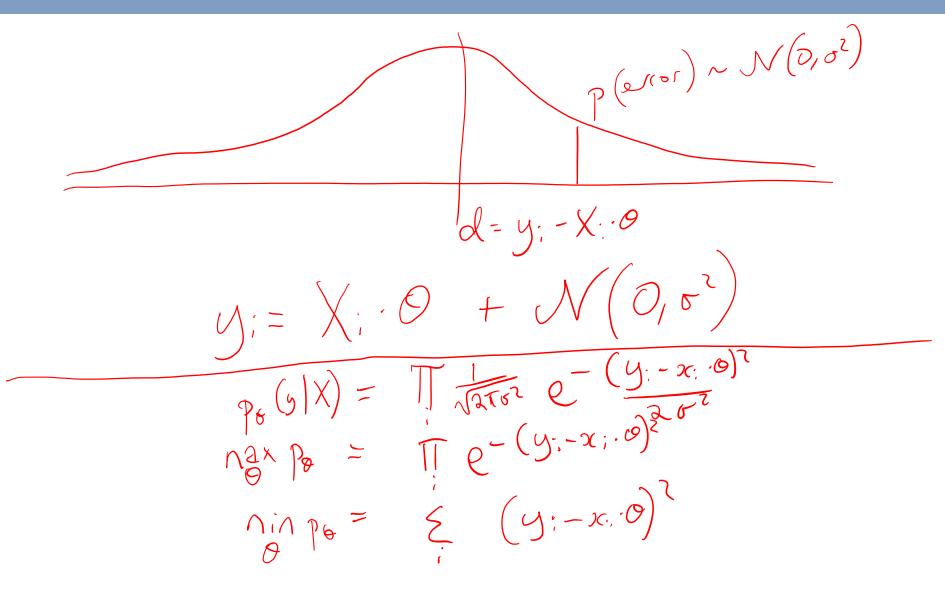
Today: Regression diagnostics

Mean-squared error (MSE)



Q: Why MSE (and not mean-absoluteerror or something else)





Coefficient of determination

Q: How low does the MSE have to be before it's "low enough"?
A: It depends! The MSE is proportional to the variance of the data

Coefficient of determination (R^2 statistic)

Mean:

Variance:

 $\vec{y} = \int_{N}^{1} \sum_{i}^{n} y_{i} \\
 v \sim (y) = \int_{N}^{1} \sum_{i}^{n} (y_{i} - y_{i})^{2} \\
 = \int_{N}^{1} \sum_{i}^{n} (y_{i} - y_{i})^{2} \\
 = \int_{N}^{1} \sum_{i}^{n} (y_{i} - y_{i})^{2}$

MSE:

Coefficient of determination (R^2 statistic)

$$FVU(f) = \frac{MSE(f)}{Var(y)}$$

(FVU = fraction of variance unexplained)

FVU(f) = 1 \longrightarrow Trivial predictor FVU(f) = 0 \longrightarrow Perfect predictor

Coefficient of determination (R^2 statistic)

$$R^2 = 1 - FVU(f) = 1 - \frac{MSE(f)}{Var(y)}$$

 $R^2 = 0$ \longrightarrow Trivial predictor $R^2 = 1$ \longrightarrow Perfect predictor

Overfitting

Q: But can't we get an R^2 of 1 (MSE of 0) just by throwing in enough random features?

A: Yes! This is why MSE and R^2 should always be evaluated on data that **wasn't** used to train the model

A good model is one that generalizes to new data

When a model performs well on **training** data but doesn't generalize, we are said to be **overfitting**

Overfitting

AB

When a model performs well on training data but doesn't generalize, we are said to be overfitting

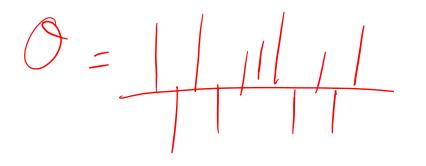
Q: What can be done to avoid overfitting?

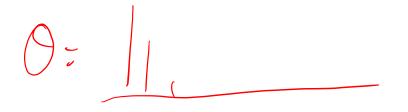
"Among competing hypotheses, the one with the fewest assumptions should be selected"

 $X\theta = y$ "hypothesis"

Q: What is a "complex" versus a "simple" hypothesis?

rathg = Ob + O, ADV + OZABV2





"coplex"

"simple"

"simple"

A1: A "simple" model is one where theta has few non-zero parameters (only a few features are relevant)

A2: A "simple" model is one where theta is almost uniform (few features are significantly more relevant than others)

A1: A "simple" model is one where theta has few non-zero parameters

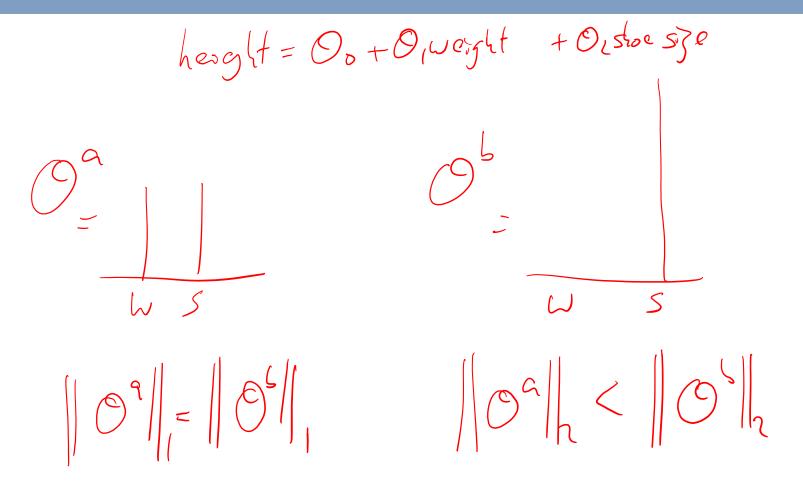
 $\frac{\xi|\mathfrak{O}_i|}{\|\theta\|_1} \text{ is small}$

 $\| heta\|_2$ is small

JE0;

A2: A "simple" model is one where theta is almost uniform

"Proof"



Regularization

Regularization is the process of penalizing model complexity during training

$$\arg \min_{\theta} = \frac{1}{N} \|y - X\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

$$MSE \qquad (I2) \text{ model complexity}$$

Regularization

Regularization is the process of penalizing model complexity during training

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_2^2 + \lambda \|\theta\|_2^2$$

How much should we trade-off accuracy versus complexity?

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

$$f(\theta)$$

- Could look for a closed form solution as we did before
- Or, we can try to solve using gradient descent

Gradient descent:

1. Initialize θ at random 2. While (not converged) do $\theta := \theta - \alpha f'(\theta)$

All sorts of annoying issues:

- How to initialize theta?
- How to determine when the process has converged?
- How to set the step size alpha

These aren't really the point of this class though

 $f(\theta) = \frac{1}{N} ||y - X\theta||_2^2 + \lambda ||\theta||_2^2$ $\frac{\partial f}{\partial \theta_k} ? \qquad f(\theta) = \frac{1}{N} \sum_{k} \left(y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left(y_i - \chi_i \cdot \theta \right)^2$ $\frac{\partial f}{\partial k} = \frac{1}{N} \sum \frac{2}{2} \chi_{ik}(y_i - \chi_{i} \cdot \theta) + 2\lambda \theta_k$

Gradient descent in scipy:

(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

(see "ridge regression" in the "sklearn" module)

Model selection

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_2^2 + \lambda \|\theta\|_2^2$$

How much should we trade-off accuracy versus complexity?

Each value of lambda generates a different model. **Q:** How do we select which one is the best?

How to select which model is best?

A1: The one with the lowest training error?A2: The one with the lowest test error?

We need a **third** sample of the data that is not used for training or testing

A **validation set** is constructed to "tune" the model's parameters

- Training set: used to optimize the model's parameters
- Test set: used to report how well we expect the
 —
 model to perform on unseen data

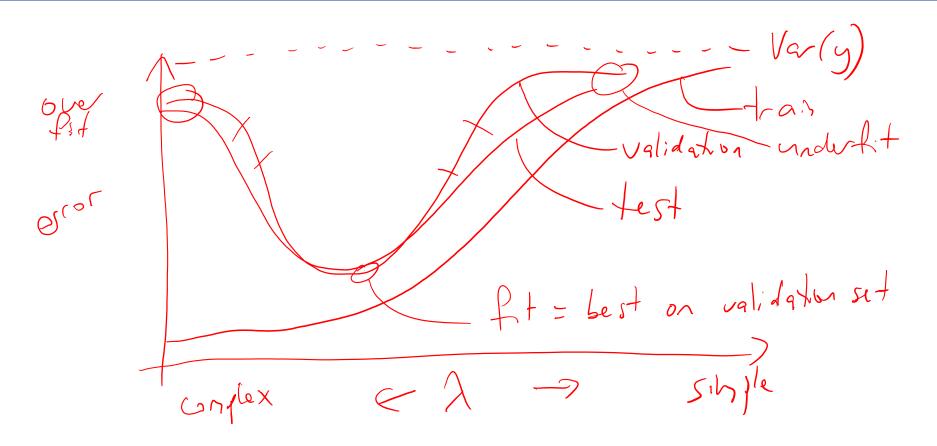
Use only!

• Validation set: used to **tune** any model parameters that are not directly optimized

A few "theorems" about training, validation, and test sets

- The training error **increases** as lambda **increases**
- The validation and test error are at least as large as the training error (assuming infinitely large random partitions)
- The validation/test error will usually have a "sweet spot" between under- and over-fitting

Model selection



Summary of Week 1: Regression

- Linear regression and least-squares
 - (a little bit of) feature design
 - Overfitting and regularization
 - Gradient descent
 - Training, validation, and testing
 - Model selection

Homework is **available** on the course webpage

http://cseweb.ucsd.edu/classes/fa19/cse258a/files/homework1.pdf

Please submit it by the beginning of the week 3 lecture (Oct 14)

All submissions should be made as **pdf files on gradescope**

Questions?