### CSE 258 — Lecture 2 Web Mining and Recommender Systems

#### Supervised learning – Regression

#### Supervised versus unsupervised learning

## Learning approaches attempt to model data in order to solve a problem

**Unsupervised learning** approaches find patterns/relationships/structure in data, but **are not** optimized to solve a particular predictive task

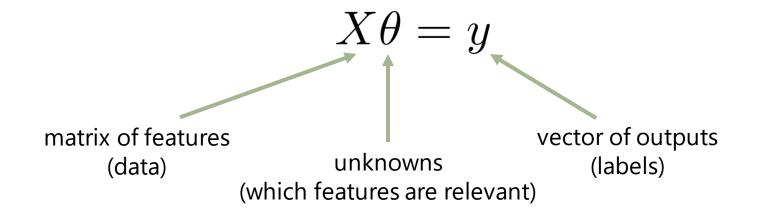
**Supervised learning** aims to directly model the relationship between input and output variables, so that the output variables can be predicted accurately given the input

#### Regression

**Regression** is one of the simplest supervised learning approaches to learn relationships between input variables (features) and output variables (predictions)

#### Linear regression

# **Linear regression** assumes a predictor of the form



(or Ax = b if you prefer)

#### Linear regression

# **Linear regression** assumes a predictor of the form

$$X\theta = y$$

**Q:** Solve for theta **A:**  $\theta = (X^T X)^{-1} X^T y$ 

#### Example 1

### **Beeradvocate**

**Beers**:



world-class 9,587 Ratings (view ratings) Brewed by:

Goose Island Beer Co. Illinois, United States

BA SCORE

100

world-class

Style | ABV American Double / Imperial Stout | 13.80% ABV

THE BROS

95

Ratings: 9,587 Reviews: 2,537

rAvg: 4.59

pDev: 9.59% Wants: 2,109

Gots: 4,563 | FT: 472

Availability: Winter

Notes/Commercial Description: 60 IBU

(Beer added by: drewbage on 06-26-2003)

Displayed for educational use only; do not reuse.

#### **Ratings/reviews:**



4.35/5 rDev -5.2% look: 4 | smell: 4.25 | taste: 4.5 | feel: 4.25 | overall: 4.25

Serving: 355 mL bottle poured into a 9 oz Libbey Embassy snifter ("bottled on: 08AUG14 1109").

Appearance: Deep, dark near-black brown. Hazy, light brown fringe of foam and limited lacing; no head.

Smell: Roasted malt, vanilla, and some warming alcohol.

Taste: Roasted malts, cocoa, burnt caramel, molasses, vanilla and dark fruit. Bourbon barrel is hinted at but never takes over.

Mouthfeel: Medium to full body and light carbonation with a very lush, silky smooth feel.

Overall: Not as complex or intense as some newer barrel-aged stouts, but so smooth and balanced with all the elements tightly integrated.

#### HipCzech, Yesterday at 05:38 AM



|   | HipCzech<br>Aficionado<br>Male, from Texas<br>Profile Page                             |  |                                              | ⊗ |
|---|----------------------------------------------------------------------------------------|--|----------------------------------------------|---|
| 8 | Member Since:<br>Points:<br>Beers:<br>Places:<br>Posts:<br>Uikes Received:<br>Trading: |  | HipCzech was last seen:<br>Today at 12:19 AM |   |

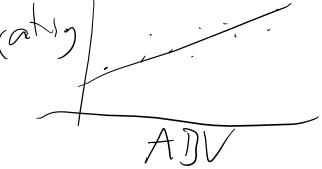


50,000 reviews are available on http://jmcauley.ucsd.edu/cse258/data/beer/beer\_50000.json (see course webpage)



#### **Real-valued features**

## How do preferences toward certain beers vary with age? How about **ABV**?



(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

#### Example 1.5: Polynomial functions

#### What about something like ABV^2?

rating =  $\theta_0 + \theta_1 \times ABV + \theta_2 \times ABV^2 + \theta_3 \times ABV^3$ 

- Note that this is perfectly straightforward: the model still takes the form weight  $\neq \theta \cdot x$
- We just need to use the feature vector

 $x = [1, ABV, ABV^{2}, ABV^{3}]$ 

#### Fitting complex functions

Note that we can use the same approach to fit arbitrary functions of the features! E.g.:

Rating =  $\theta_0 + \theta_1 \times ABV + \theta_2 \times ABV^2 + \theta_3 \exp(ABV) + \theta_4 \sin(ABV)$ 

 We can perform arbitrary combinations of the features and the model will still be linear in the parameters (theta):

$$Rating = \theta \cdot x$$

#### Fitting complex functions

The same approach would **not** work if we wanted to transform the parameters:

Rating =  $\theta_0 + \theta_1 \times ABV + \theta_2^2 \times ABV + \sigma(\theta_3) \times ABV$ 

- The **linear** models we've seen so far do not support these types of transformations (i.e., they need to be linear in their parameters)
- There *are* alternative models that support non-linear transformations of parameters, e.g. neural networks



#### **Categorical features**

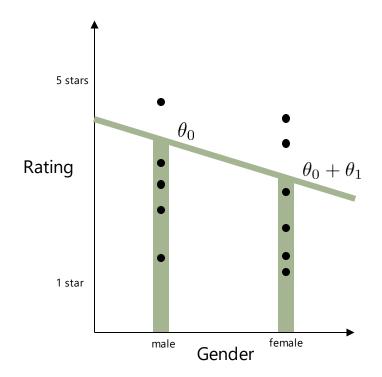
# How do beer preferences vary as a function of **gender**?

(code for all examples is on <a href="http://jmcauley.ucsd.edu/cse258/code/week1.py">http://jmcauley.ucsd.edu/cse258/code/week1.py</a>)

#### Example 2



#### Example 2



 $\theta_0$  is the (predicted/average) rating for males

 $\theta_1$  is the **how much higher** females rate than males (in this case a negative number)

We're really still fitting a line though!

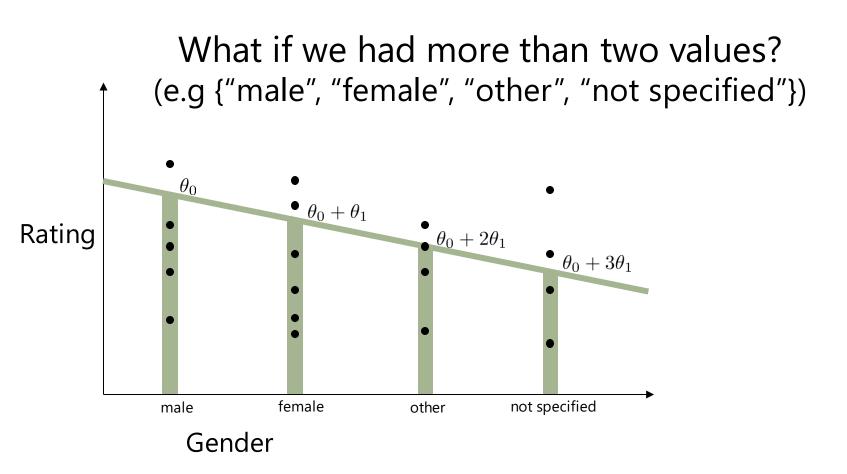
 $rathy = O_0 + O_1 \times [is F]$ X (1,0) formales (1,1) forfingle

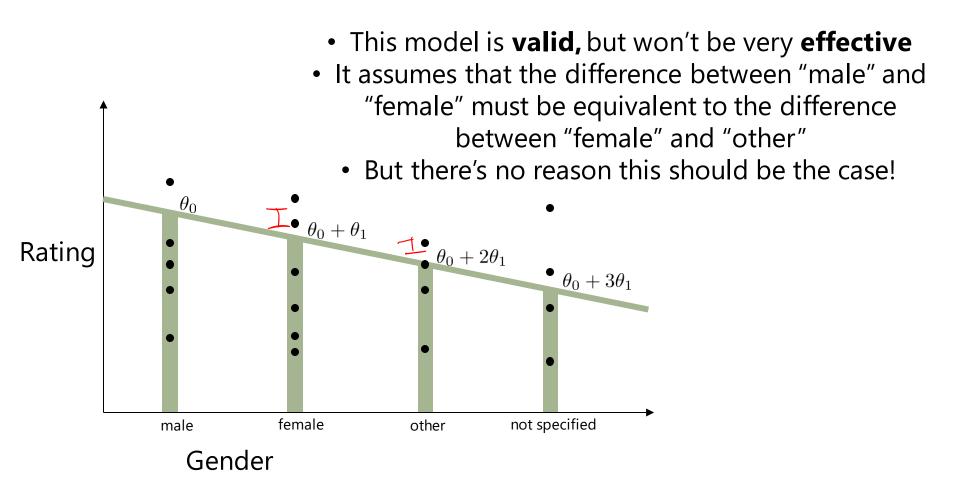
What if we had more than two values? (e.g {"male", "female", "other", "not specified"}) Could we apply the same approach?

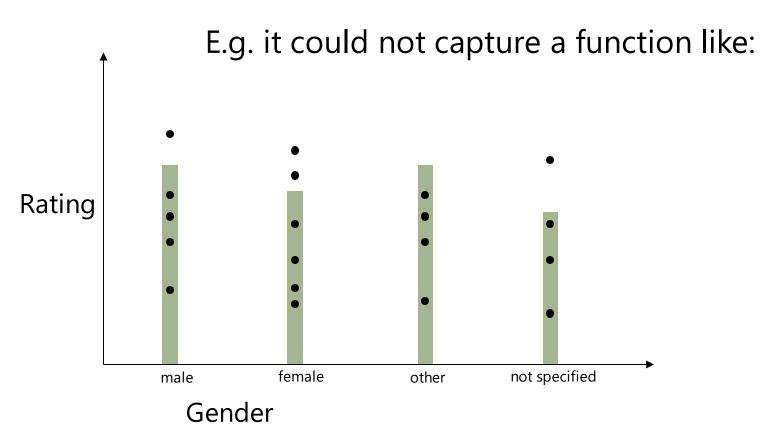
Rating =  $\theta_0 + \theta_1 \times \text{gender}$ 

gender = 0 if "male", 1 if "female", 2 if "other", 3 if "not specified"

Rating =  $\theta_0$  if male Rating =  $\theta_0 + \theta_1$  if female Rating =  $\theta_0 + 2\theta_1$  if other Rating =  $\theta_0 + 3\theta_1$  if not specified







Instead we need something like:

Rating  $= \theta_0$  if male Rating  $= \theta_0 + \theta_1$  if female Rating  $= \theta_0 + \theta_2$  if other Rating  $= \theta_0 + \theta_3$  if not specified

This is equivalent to:

 $(\theta_0, \theta_1, \theta_2, \theta_3) \cdot (1; \text{feature})$ 

where feature = [1, 0, 0] for "female" feature = [0, 1, 0] for "other" feature = [0, 0, 1] for "not specified"

#### Concept: One-hot encodings

feature = [1, 0, 0] for "female" feature = [0, 1, 0] for "other" feature = [0, 0, 1] for "not specified"

- This type of encoding is called a **one-hot encoding** (because we have a feature vector with only a single "1" entry)
- Note that to capture 4 possible categories, we only need three dimensions (a dimension for "male" would be redundant)
- This approach can be used to capture a variety of categorical feature types, as well as objects that belong to multiple categories

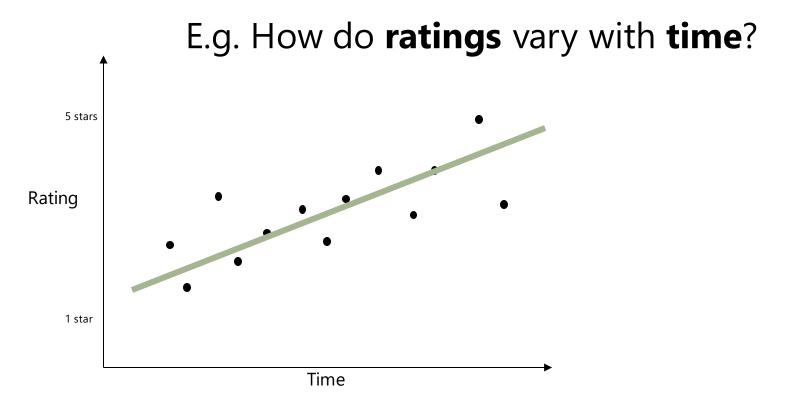
#### Linearly dependent features

#### Linearly dependent features

$$rating = 2 + 2(if n) + J(if F)$$
  
=  $1000 - 997(if n) - 995(if F)$ 



#### How would you build a feature to represent the **month**, and the impact it has on people's rating behavior?



#### E.g. How do **ratings** vary with **time**?

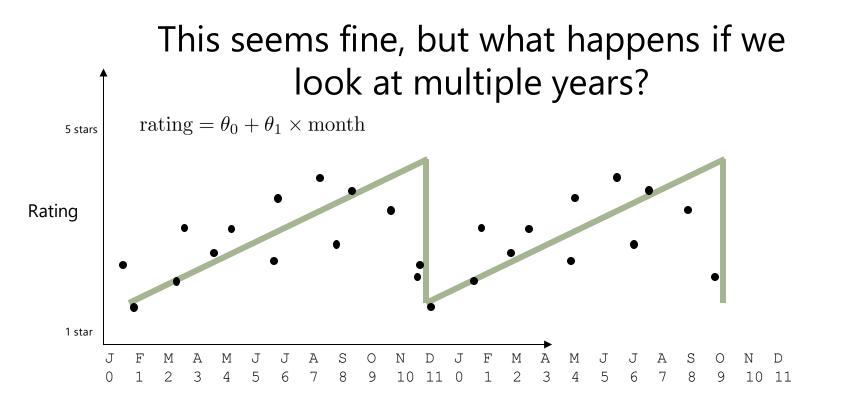
- In principle this picture looks okay (compared our previous example on categorical features) we're predicting a **real valued** quantity from **real valued** data (assuming we convert the date string to a number)
- So, what would happen if (e.g. we tried to train a predictor based on the month of the year)?

#### E.g. How do **ratings** vary with **time**?

• Let's start with a simple feature representation, e.g. map the month name to a month number:

rating 
$$= \theta_0 + \theta_1 \times \text{month}$$
 where  $\begin{bmatrix} \text{Jan} = [0] \\ \text{Feb} = [1] \\ \text{Mar} = [2] \\ \text{etc.} \end{bmatrix}$ 



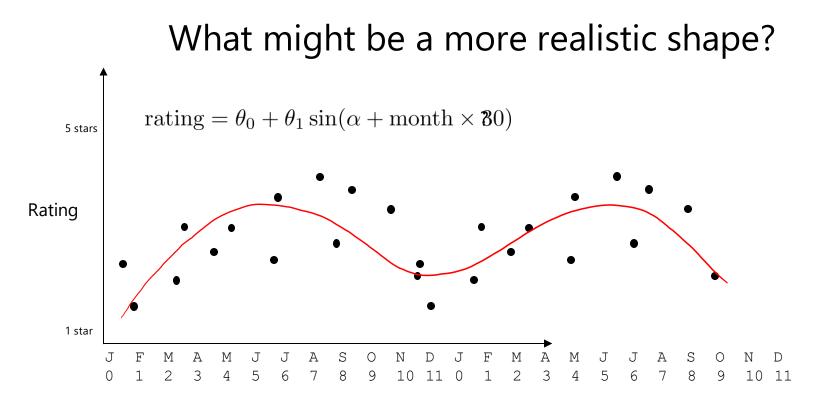


#### Modeling temporal data

This seems fine, but what happens if we look at multiple years?

- This representation implies that the model would "wrap around" on December 31 to its January 1<sup>st</sup> value.
- This type of "sawtooth" pattern probably isn't very realistic

#### Modeling temporal data

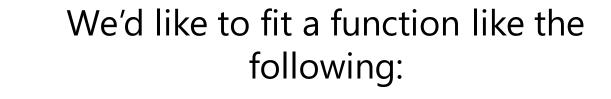


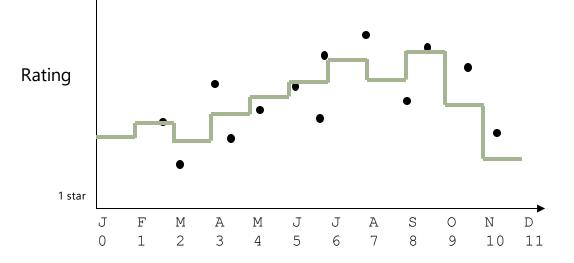
#### Modeling temporal data

Fitting some periodic function like a sin wave would be a valid solution, but is difficult to get right, and fairly inflexible

- Also, it's not a **linear model**
- **Q:** What's a class of functions that we can use to capture a more flexible variety of shapes?
- **A:** Piecewise functions!

#### Concept: Fitting piecewise functions





5 stars

#### Fitting piecewise functions

## In fact this is very easy, even for a linear model! This function looks like:

rating = 
$$\theta_0 + \theta_1 \times \delta(\text{is Feb}) + \theta_2 \times \delta(\text{is Mar}) + \theta_3 \times \delta(\text{is Apr}) \cdots$$
  
1 if it's Feb, 0  
otherwise

- Note that we don't need a feature for January
- i.e., theta\_0 captures the January value, theta\_0 captures the *difference* between February and January, etc.

#### Fitting piecewise functions

## Or equivalently we'd have features as follows:

 $rating = \theta \cdot x \quad \text{where} \quad$ 

#### Fitting piecewise functions

Note that this is still a form of **one-hot** encoding, just like we saw in the "categorical features" example

- This type of feature is very flexible, as it can handle complex shapes, periodicity, etc.
- We could easily increase (or decrease) the resolution to a week, or an entire season, rather than a month, depending on how fine-grained our data was

#### Concept: Combining one-hot encodings

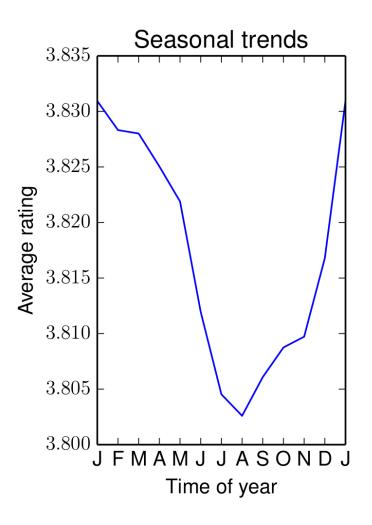
We can also extend this by combining several one-hot encodings together:

rating =  $\theta \cdot x = \theta \cdot [x_1; x_2]$  where

• •

#### What does the data actually look like?

#### Season vs. rating (overall)





#### Random features

### What happens as we add more and more **random** features?

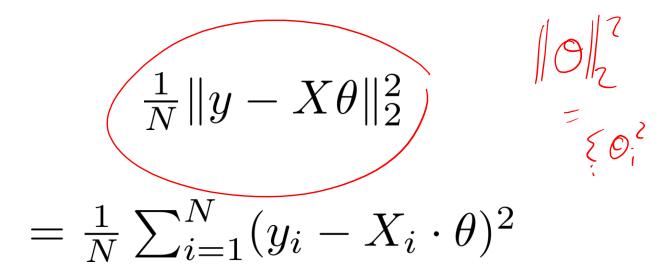
(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

#### CSE 258 — Lecture 2 Web Mining and Recommender Systems

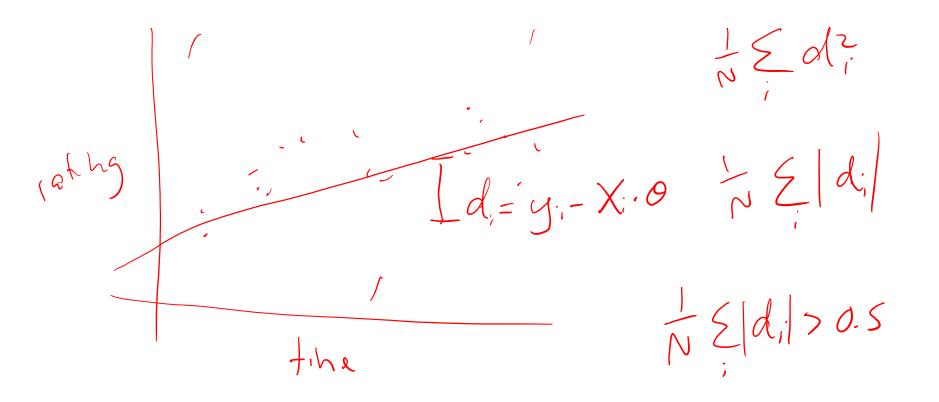
Regression Diagnostics

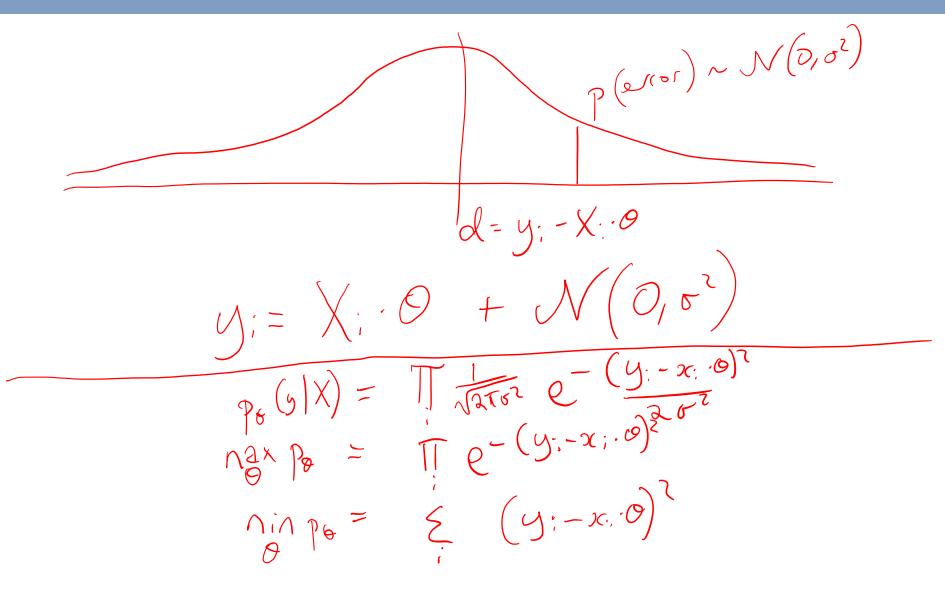
Today: Regression diagnostics

#### **Mean-squared error** (MSE)



#### **Q:** Why MSE (and not mean-absoluteerror or something else)





#### **Coefficient of determination**

Q: How low does the MSE have to be before it's "low enough"?
A: It depends! The MSE is proportional to the variance of the data

#### **Coefficient of determination** (R^2 statistic)

Mean:

Variance:

 $\vec{y} = \int_{N}^{1} \sum_{i}^{n} y_{i} \\
 v \sim (y) = \int_{N}^{1} \sum_{i}^{n} (y_{i} - y_{i})^{2} \\
 = \int_{N}^{1} \sum_{i}^{n} (y_{i} - y_{i})^{2} \\
 = \int_{N}^{1} \sum_{i}^{n} (y_{i} - y_{i})^{2}$ 

MSE:

#### **Coefficient of determination** (R^2 statistic)

$$FVU(f) = \frac{MSE(f)}{Var(y)}$$

(FVU = fraction of variance unexplained)

FVU(f) = 1  $\longrightarrow$  Trivial predictor FVU(f) = 0  $\longrightarrow$  Perfect predictor

#### **Coefficient of determination** (R^2 statistic)

$$R^2 = 1 - FVU(f) = 1 - \frac{MSE(f)}{Var(y)}$$

 $R^2 = 0$   $\longrightarrow$  Trivial predictor  $R^2 = 1$   $\longrightarrow$  Perfect predictor

#### Overfitting

**Q:** But can't we get an R^2 of 1 (MSE of 0) just by throwing in enough random features?

**A:** Yes! This is why MSE and R^2 should always be evaluated on data that **wasn't** used to train the model

A good model is one that generalizes to new data



# When a model performs well on **training** data but doesn't generalize, we are said to be **overfitting**

#### Overfitting

AB

#### When a model performs well on training data but doesn't generalize, we are said to be overfitting

**Q:** What can be done to avoid overfitting?

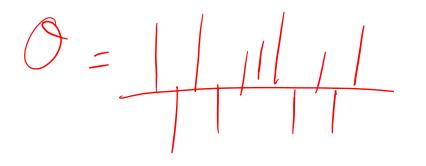
#### "Among competing hypotheses, the one with the fewest assumptions should be selected"

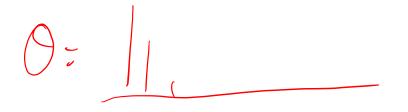


 $X\theta = y$ "hypothesis"

## **Q:** What is a "complex" versus a "simple" hypothesis?

rathg = Ob + O, ADV + OZABV2 .....





"coplex"

"simple"

"simple"

#### A1: A "simple" model is one where theta has few non-zero parameters (only a few features are relevant)

#### A2: A "simple" model is one where theta is almost uniform (few features are significantly more relevant than others)

**A1:** A "simple" model is one where theta has few non-zero parameters

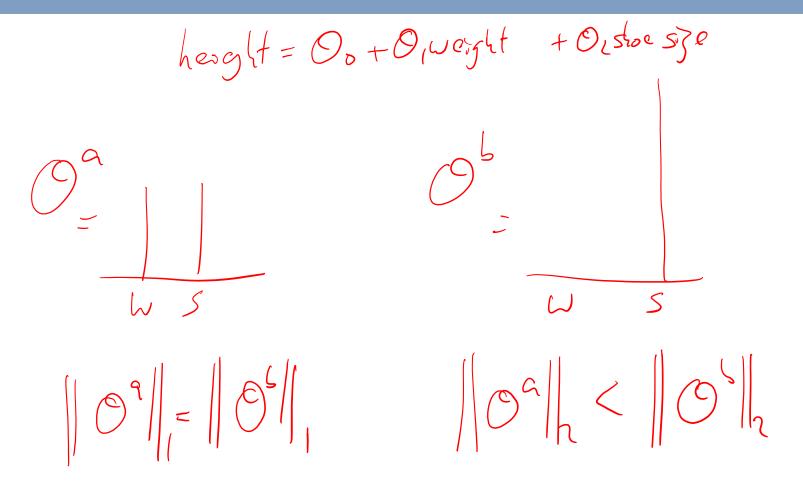
 $\frac{\xi|\mathfrak{O}_i|}{\|\theta\|_1} \text{ is small}$ 

 $\| heta\|_2$  is small

JE0;

**A2:** A "simple" model is one where theta is almost uniform

#### "Proof"



#### Regularization

## **Regularization** is the process of penalizing model complexity during training

$$\arg \min_{\theta} = \frac{1}{N} \|y - X\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

$$MSE \qquad (I2) \text{ model complexity}$$

#### Regularization

## **Regularization** is the process of penalizing model complexity during training

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_2^2 + \lambda \|\theta\|_2^2$$

How much should we trade-off accuracy versus complexity?

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

$$f(\theta)$$

- Could look for a closed form solution as we did before
- Or, we can try to solve using gradient descent

#### Gradient descent:

#### 1. Initialize $\theta$ at random 2. While (not converged) do $\theta := \theta - \alpha f'(\theta)$

All sorts of annoying issues:

- How to initialize theta?
- How to determine when the process has converged?
- How to set the step size alpha

These aren't really the point of this class though

 $f(\theta) = \frac{1}{N} ||y - X\theta||_2^2 + \lambda ||\theta||_2^2$  $\frac{\partial f}{\partial \theta_k} ? \qquad f(\theta) = \frac{1}{N} \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2 + \chi \sum_{k} \left( y_i - \chi_i \cdot \theta \right)^2$  $\frac{\partial f}{\partial k} = \frac{1}{N} \sum \frac{2}{2} \chi_{ik}(y_i - \chi_{i} \cdot \theta) + 2\lambda \theta_k$ 

## Gradient descent in scipy:

(code for all examples is on <a href="http://jmcauley.ucsd.edu/cse258/code/week1.py">http://jmcauley.ucsd.edu/cse258/code/week1.py</a>)

(see "ridge regression" in the "sklearn" module)

#### Model selection

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_2^2 + \lambda \|\theta\|_2^2$$

How much should we trade-off accuracy versus complexity?

Each value of lambda generates a different model. **Q:** How do we select which one is the best?

#### How to select which model is best?

A1: The one with the lowest training error?A2: The one with the lowest test error?

We need a **third** sample of the data that is not used for training or testing

#### A **validation set** is constructed to "tune" the model's parameters

- Training set: used to optimize the model's parameters
- Test set: used to report how well we expect the 
   —
   model to perform on unseen data

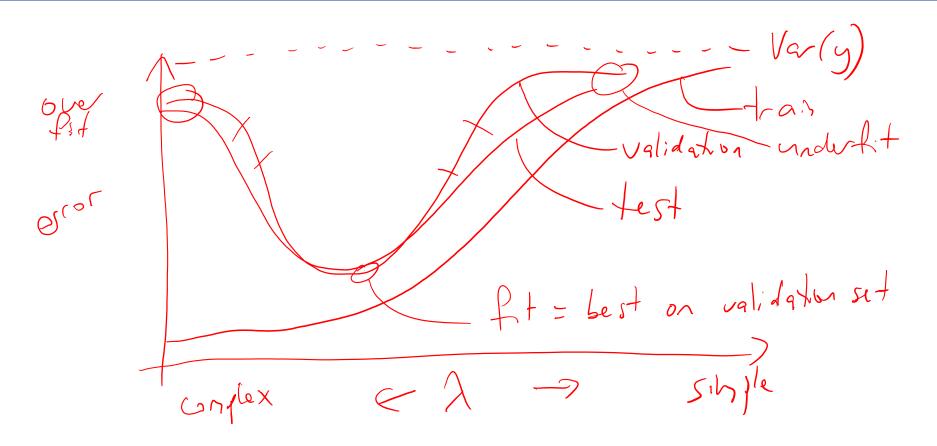
Use only!

• Validation set: used to **tune** any model parameters that are not directly optimized

## A few "theorems" about training, validation, and test sets

- The training error **increases** as lambda **increases**
- The validation and test error are at least as large as the training error (assuming infinitely large random partitions)
- The validation/test error will usually have a "sweet spot" between under- and over-fitting

#### Model selection



#### Summary of Week 1: Regression

- Linear regression and least-squares
  - (a little bit of) feature design
  - Overfitting and regularization
    - Gradient descent
  - Training, validation, and testing
    - Model selection



### Homework is **available** on the course webpage

http://cseweb.ucsd.edu/classes/fa19/cse258a/files/homework1.pdf

Please submit it by the beginning of the week 3 lecture (Oct 14)

All submissions should be made as **pdf files on gradescope** 

#### Questions?