
CSE 258 – Lecture 2
Web Mining and Recommender Systems

Supervised learning – Regression

Supervised versus unsupervised learning

Learning approaches attempt to

model data in order to solve a problem

Unsupervised learning approaches find

patterns/relationships/structure in data, but are not

optimized to solve a particular predictive task

Supervised learning aims to directly model the

relationship between input and output variables, so that the

output variables can be predicted accurately given the input

Regression

Regression is one of the simplest

supervised learning approaches to learn

relationships between input variables

(features) and output variables

(predictions)

Linear regression

Linear regression assumes a predictor

of the form

(or if you prefer)

matrix of features

(data) unknowns

(which features are relevant)

vector of outputs

(labels)

Linear regression

Linear regression assumes a predictor

of the form

Q: Solve for theta

A:

Example 1

Beers:

Ratings/reviews:
User profiles:

Example 1

50,000 reviews are available on

http://jmcauley.ucsd.edu/cse258/data/beer/beer_50000.json

(see course webpage)

http://jmcauley.ucsd.edu/cse258/data/beer/beer_50000.json

Example 1

How do preferences toward certain

beers vary with age?

How about ABV?

Real-valued features

(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

http://jmcauley.ucsd.edu/cse258/code/week1.py

Example 1.5: Polynomial functions

What about something like ABV^2?

• Note that this is perfectly straightforward:

the model still takes the form

• We just need to use the feature vector

x = [1, ABV, ABV^2, ABV^3]

Fitting complex functions

Note that we can use the same approach to

fit arbitrary functions of the features! E.g.:

• We can perform arbitrary combinations of the

features and the model will still be linear in the

parameters (theta):

Fitting complex functions

The same approach would not work if we

wanted to transform the parameters:

• The linear models we’ve seen so far do not support

these types of transformations (i.e., they need to be

linear in their parameters)

• There are alternative models that support non-linear

transformations of parameters, e.g. neural networks

Example 2

How do beer preferences vary as a

function of gender?

Categorical features

(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

http://jmcauley.ucsd.edu/cse258/code/week1.py

Example 2

E.g. How does rating vary with gender?

Gender

Rating

1 stars

5 stars

Example 2

Gender

Rating

1 star

5 stars

male female

is the (predicted/average) rating for males

is the how much higher females rate than

males (in this case a negative number)

We’re really still fitting a line though!

Motivating examples

What if we had more than two values?
(e.g {“male”, “female”, “other”, “not specified”})

Could we apply the same approach?

gender = 0 if “male”, 1 if “female”, 2 if “other”, 3 if “not specified”

if male

if female

if other

if not specified

Motivating examples

What if we had more than two values?
(e.g {“male”, “female”, “other”, “not specified”})

Gender

Rating

male female other not specified

Motivating examples

• This model is valid, but won’t be very effective

• It assumes that the difference between “male” and

“female” must be equivalent to the difference

between “female” and “other”

• But there’s no reason this should be the case!

Gender

Rating

male female other not specified

Motivating examples

E.g. it could not capture a function like:

Gender

Rating

male female other not specified

Motivating examples

Instead we need something like:

if male

if female

if other

if not specified

Motivating examples

This is equivalent to:

where feature = [1, 0, 0] for “female”

feature = [0, 1, 0] for “other”

feature = [0, 0, 1] for “not specified”

Concept: One-hot encodings

feature = [1, 0, 0] for “female”

feature = [0, 1, 0] for “other”

feature = [0, 0, 1] for “not specified”

• This type of encoding is called a one-hot encoding (because

we have a feature vector with only a single “1” entry)

• Note that to capture 4 possible categories, we only need three

dimensions (a dimension for “male” would be redundant)

• This approach can be used to capture a variety of categorical

feature types, as well as objects that belong to multiple

categories

Linearly dependent features

Linearly dependent features

Example 3

How would you build a feature

to represent the month, and the

impact it has on people’s rating

behavior?

Motivating examples

E.g. How do ratings vary with time?

Time

Rating

1 star

5 stars

Motivating examples

E.g. How do ratings vary with time?

• In principle this picture looks okay (compared our

previous example on categorical features) – we’re

predicting a real valued quantity from real

valued data (assuming we convert the date string

to a number)

• So, what would happen if (e.g. we tried to train a

predictor based on the month of the year)?

Motivating examples

E.g. How do ratings vary with time?

• Let’s start with a simple feature representation,

e.g. map the month name to a month number:

Jan = [0]

Feb = [1]

Mar = [2]

etc.

where

Motivating examples

The model we’d learn might look something like:

J F M A M J J A S O N D

0 1 2 3 4 5 6 7 8 9 10 11

Rating

1 star

5 stars

Motivating examples

J F M A M J J A S O N D J F M A M J J A S O N D

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

Rating

1 star

5 stars

This seems fine, but what happens if we

look at multiple years?

Modeling temporal data

• This representation implies that the

model would “wrap around” on

December 31 to its January 1st value.

• This type of “sawtooth” pattern probably

isn’t very realistic

This seems fine, but what happens if we

look at multiple years?

Modeling temporal data

J F M A M J J A S O N D J F M A M J J A S O N D

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

Rating

1 star

5 stars

What might be a more realistic shape?

?

Modeling temporal data

• Also, it’s not a linear model

• Q: What’s a class of functions that we can use to

capture a more flexible variety of shapes?

• A: Piecewise functions!

Fitting some periodic function like a sin wave

would be a valid solution, but is difficult to get

right, and fairly inflexible

Concept: Fitting piecewise functions

We’d like to fit a function like the

following:

J F M A M J J A S O N D

0 1 2 3 4 5 6 7 8 9 10 11

Rating

1 star

5 stars

Fitting piecewise functions

In fact this is very easy, even for a linear

model! This function looks like:

1 if it’s Feb, 0

otherwise

• Note that we don’t need a feature for January

• i.e., theta_0 captures the January value, theta_0

captures the difference between February and

January, etc.

Fitting piecewise functions

Or equivalently we’d have features as

follows:

where

x = [1,1,0,0,0,0,0,0,0,0,0,0] if February

[1,0,1,0,0,0,0,0,0,0,0,0] if March

[1,0,0,1,0,0,0,0,0,0,0,0] if April

...

[1,0,0,0,0,0,0,0,0,0,0,1] if December

Fitting piecewise functions

Note that this is still a form of one-hot

encoding, just like we saw in the

“categorical features” example

• This type of feature is very flexible, as it can

handle complex shapes, periodicity, etc.

• We could easily increase (or decrease) the

resolution to a week, or an entire season,

rather than a month, depending on how

fine-grained our data was

Concept: Combining one-hot encodings

We can also extend this by combining

several one-hot encodings together:

where

x1 = [1,1,0,0,0,0,0,0,0,0,0,0] if February

[1,0,1,0,0,0,0,0,0,0,0,0] if March

[1,0,0,1,0,0,0,0,0,0,0,0] if April

...

[1,0,0,0,0,0,0,0,0,0,0,1] if December

x2 = [1,0,0,0,0,0] if Tuesday

[0,1,0,0,0,0] if Wednesday

[0,0,1,0,0,0] if Thursday

...

What does the data actually look like?

Season vs.

rating (overall)

Example 3

What happens as we add more and

more random features?

Random features

(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

http://jmcauley.ucsd.edu/cse258/code/week1.py

CSE 258 – Lecture 2
Web Mining and Recommender Systems

Regression Diagnostics

Today: Regression diagnostics

Mean-squared error (MSE)

Regression diagnostics

Q: Why MSE (and not mean-absolute-

error or something else)

Regression diagnostics

Regression diagnostics

Regression diagnostics

Coefficient of determination

Q: How low does the MSE have to be

before it’s “low enough”?

A: It depends! The MSE is proportional

to the variance of the data

Regression diagnostics

Coefficient of determination

(R^2 statistic)

Mean:

Variance:

MSE:

Regression diagnostics

Coefficient of determination

(R^2 statistic)

FVU(f) = 1 Trivial predictor

FVU(f) = 0 Perfect predictor

(FVU = fraction of variance unexplained)

Regression diagnostics

Coefficient of determination

(R^2 statistic)

R^2 = 0 Trivial predictor

R^2 = 1 Perfect predictor

Overfitting

Q: But can’t we get an R^2 of 1

(MSE of 0) just by throwing in

enough random features?

A: Yes! This is why MSE and R^2

should always be evaluated on data

that wasn’t used to train the model

A good model is one that

generalizes to new data

Overfitting

When a model performs well on

training data but doesn’t

generalize, we are said to be

overfitting

Overfitting

When a model performs well on

training data but doesn’t

generalize, we are said to be

overfitting

Q: What can be done to avoid

overfitting?

Occam’s razor

“Among competing hypotheses, the one with

the fewest assumptions should be selected”

Occam’s razor

“hypothesis”

Q: What is a “complex” versus a

“simple” hypothesis?

Occam’s razor

A1: A “simple” model is one where

theta has few non-zero parameters
(only a few features are relevant)

A2: A “simple” model is one where

theta is almost uniform
(few features are significantly more relevant than others)

Occam’s razor

A1: A “simple” model is one where

theta has few non-zero parameters

A2: A “simple” model is one

where theta is almost uniform

is small

is small

“Proof”

Regularization

Regularization is the process of

penalizing model complexity during

training

MSE (l2) model complexity

Regularization

Regularization is the process of

penalizing model complexity during

training

How much should we trade-off accuracy versus complexity?

Optimizing the (regularized) model

• Could look for a closed form

solution as we did before

• Or, we can try to solve using

gradient descent

Optimizing the (regularized) model

Gradient descent:

1. Initialize at random

2. While (not converged) do

All sorts of annoying issues:

• How to initialize theta?

• How to determine when the process has converged?

• How to set the step size alpha

These aren’t really the point of this class though

Optimizing the (regularized) model

Optimizing the (regularized) model

Gradient descent in

scipy:

(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

(see “ridge regression” in the “sklearn” module)

http://jmcauley.ucsd.edu/cse258/code/week1.py

Model selection

How much should we trade-off accuracy versus complexity?

Each value of lambda generates a

different model. Q: How do we

select which one is the best?

Model selection

How to select which model is best?

A1: The one with the lowest training

error?

A2: The one with the lowest test

error?

We need a third sample of the data

that is not used for training or testing

Model selection

A validation set is constructed to

“tune” the model’s parameters

• Training set: used to optimize the model’s

parameters

• Test set: used to report how well we expect the

model to perform on unseen data

• Validation set: used to tune any model

parameters that are not directly optimized

Model selection

A few “theorems” about training,

validation, and test sets

• The training error increases as lambda increases

• The validation and test error are at least as large as

the training error (assuming infinitely large

random partitions)

• The validation/test error will usually have a “sweet

spot” between under- and over-fitting

Model selection

Summary of Week 1: Regression

• Linear regression and least-squares

• (a little bit of) feature design

• Overfitting and regularization

• Gradient descent

• Training, validation, and testing

• Model selection

Homework

Homework is available on the course

webpage
http://cseweb.ucsd.edu/classes/fa19/cse258-

a/files/homework1.pdf

Please submit it by the beginning of the

week 3 lecture (Oct 14)

All submissions should be made as pdf

files on gradescope

http://cseweb.ucsd.edu/classes/fa19/cse258-a/files/homework1.pdf

Questions?

