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We (hopefully?) know enough by now to...
» Read academic papers on Recommender

Systems
 Understand most of the models and
evaluations used

See also — CSE291



Bayesian Personalized Ranking
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BPR: Bayesian Personalized Ranking from Implicit Feedback

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner and Lars Schmidt-Thieme
{srendle, frendenthaler, gantner, schmidt-thieme } Gismll.de
Machine Leamning Lab, University of Hildesheim
Marienburger Platz 22, 31141 Hildesheim, Germany

Abstract

Item recommendation is the task of predict-
ing a personalized ranking on a set of items
(e.g. websites, movies, products). In this
paper, we investigate the most common sce-
nario with implicit feedback (e.g. clicks,
purchases). There are many methods for
item recommendation from implicit feedback
like matrix factorization (MF) or adaptive k-
nearest-neighbor (kNN). Even though these
methods are designed for the item predice

sonalization is attractive both for content providers,
who can increase sales or views, and for customers.
who can find interesting content more easily. In this
paper, we focus on item recommendation. The task of
item recommendation is to create a user-specific rank-
ing for a set of items. Preferences of users about items
are learned from the user's past interaction with the
system = e.g. his buying history, viewing history, etc.

Recommender systems are an active topic of research.
Most recent work is on scenarios where users provide
explicit feedback, e.g. in terms of ratings. Never-
theless in realeunrld seenarios most feedback is not




Bayesian Personalized Ranking

Goal: Estimate a personalized ranking
function for each user
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Bayesian Personalized Ranking

Why? Compare to “traditional” approach of
replacing “missing values” by O:
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Bayesian Personalized Ranking

Why? Compare to “traditional” approach of
replacing “missing values” by O:
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This suggests a possible solution
based on ranking



Bayesian Personalized Ranking

Defn: AUC (for a user u)
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consulled scoring function that
compares an item ( to
an item fora user u

The AUC essentially counts how many times the model
correctly identifies that u prefers the item they bought
(positive feedback) over the item they did not



Bayesian Personalized Ranking

Defn: AUC (for a user u)

AUC(u) := O(Zyij > 0)
(u) : |I+||I\I+|Z Z (2 J
eIl je|I\I|
AUC = 1:  We always guess correctly among

two potential items i and
AUC = 0.5: We guess no better than random



Bayesian Personalized Ranking

Defn: AUC
= Area Under Precision Recall Curve
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Bayesian Personalized Ranking

Summary: Goal is to count how many times we identified 5(:% N U')
i as being more preferable than j for a user u utj
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Bayesian Personalized Ranking

Summary: Goal is to count how many times we identified 5(:% N U')
i as being more preferable than j for a user u utj

Loss functions
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Bayesian Personalized Ranking

Idea:  Replace the counting function 0(Zyi; > 0) by a smooth function

/

0 (Zuij)
ff?‘uij is any function that compares the

compatibility of { and j for a user u

e.g. could be based on matrix factorization:

Y- BoA -



Bayesian Personalized Ranking

Idea:

Replace the counting function d(Z;; > 0) by a smooth function

BPR-OPT :=1n p(©| >,,)
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Bayesian Personalized Ranking

Idea:  Replace the counting function 0(Zyi; > 0) by a smooth function
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Bayesian Personalized Ranking

Experiments:
* RossMann (online drug store)
« Netflix (treated as a binary problem)
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Bayesian Personalized Ranking

Morals of the story:

« Given a "one-class” prediction task (like purchase
prediction) we might want to optimize a ranking
function rather than trying to factorize a matrix
directly

« The AUC is one such measure that counts among a
users u, items they consumed (, and items they did
not consume, j, how often we correctly guessed
that i was preferred by u

« We can optimize this approximately by maximizing

0(Zyij) where Tyij = Yu Vi — Yu * Vj
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Factorizing Personalized Markov Chains

for Next-Basket Recommendation
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Factorizing Personalized Markov Chains
for Next-Basket Recommendation

Steffen Rendle Christoph Freudenthaler Lars Schmidt-Thieme
Department of Reasoning for Information Systems and Information Systems and
Intelligence Machine Learning Lab Machine Learning Lab
The Institute of Scientific and  Institute for Computer Science Institute for Computer Science
Industrial Research University of Hildoshoim University of Hildesheim,
Osaka University, Japan Germany
rendle@ar.sanken.osaka- freudenthaler@lsmll uni- schmidt-

u.ac.jp hildes

ABSTRACT

Recommender systems are an important component of many
websites. Two of the most popular approaches are based on
matrix factorization (MF) and Markov chains (MC). MF
mothods learn the general taste of a user by factorizing the
matrix over observed user-item preferences. On the other
hand, MC methods model sequential behavior by learning a
transition graph over items that is used to predict the next
action based on the recent actions of a user. In this paper, we
present a method bringing both approaches together, Our
method is l)mcd on pcmmnlmd transition grnphs over un-

Bl fcic O8S A VU Mg

aad bk and "o “he Adian

heim.de

oo de

1. INTRODUCTION

A core technology of many recent websites are recom-
mender systems. They are used for example to increase sales
in e-commerce, clicking rates on websites or visitor satisfac-
tion in general. In this paper, we deal with the problem
setting where sequential basket data is given per user. An
obvious example is an online shop where a user buys items
(e.g. books or CDs). In these applications, usually several
items are bought at the same time, i.e. we have a set/basket
of items at one point of time. The target is now to recom-
mend items to the user that he might want to buy in his




Factorizing Personalized Markov Chains

for Next-Basket Recommendation

Goal: build temporal models just by
looking at the item the user purchased
previously

r(u,i|j)

(or pu(2|7))



Factorizing Personalized Markov Chains

for Next-Basket Recommendation

Assumption: all of the information
contained by temporal models is
captured by the previous action

this is what's known as a first-order
Markov property



Factorizing Personalized Markov Chains

for Next-Basket Recommendation

Is this assumption realistic?
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Factorizing Personalized Markov Chains

for Next-Basket Recommendation

Data setup: Rossmann basket data
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Factorizing Personalized Markov Chains

for Next-Basket Recommendation

Prediction task:

1 .
p(t € B¢|Bi—1) := p(i € Be|l € Bi—1)
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Factorizing Personalized Markov Chains

for Next-Basket Recommendation

Could we try and compute such probabilities
just by counting?

p(i € BiANl € By_1)

ai; = p(i € Be|l € Bi—1) =

p(l € Bi-1)
_ H(Bt,Bim1) :i € BiALE Bioa}| 5 . prev, i eed
{(B¢,Bi—1) : l € Bi_1}| 57 oo

Seems okay, as long as the item vocabulary is small
(I1N2 possible item/item combinations to count)

But it's not personalized



Factorizing Personalized Markov Chains

for Next-Basket Recommendation

What if we try to
personalize?

p(i € B Nl € Bi_1)

auii=p(i € Bi|l € Bj—,) =

p(l € B ,)
_ HB,Biy) i€ BEALE Bi}[51 shond o
1(Br.Bry) 1€ Biy)| i 8
‘30‘0/ w A

Now we would have U*I*2 counts to compare

Clearly not feasible, so we need to try and
estimate/model this quantity (e.g. by matrix factorization)



Factorizing Personalized Markov Chains

for Next-Basket Recommendation

What if we try to
personalize?
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Factorizing Personalized Markov Chains

for Next-Basket Recommendation

What if we try to
personalize?
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Factorizing Personalized Markov Chains

for Next-Basket Recommendation

Prediction task:

1

p(i € B¢|Bi—1) := m
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Factorizing Personalized Markov Chains

for Next-Basket Recommendation

Prediction task:
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Factorizing Personalized Markov Chains

for Next-Basket Recommendation

Online-Shopping (sparse)
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Factorizing Personalized Markov Chains

for Next-Basket Recommendation

Morals of the story:

« Can improve performance by modeling third
order interactions between the user, the item, and
the previous item

* This is simpler than temporal models — but makes a
big assumption

* Given the blowup in the interaction space, this can
be handled by tensor decomposition techniques
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Personalized Ranking Metric Embedding

for Next New POl Recommendation
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Personalized Ranking Metric Embedding for Next New POI Recommendation

Shanshan Feng,' Xutao Li,” Yifeng Zeng, Gao Cong,” Yeow Meng Chee,' Quan Yuan’

'Interdisciplinary Graduate School,

Nanyang Technological University, Singapore, sfeng003@e.ntu.edu.sg
School of Computer Engineering, Nanyang Technological University, Singapore,
{lixutao@, gaocong @, gyuanl @e. }ntu.edu.sg
3School of Computing, Teesside University, UK, Y.Zeng @tees.ac.uk
*School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore, ymchee @ntu.edu.sg

Abstract

The rapidly growing of Location-based Social Net-
works (LBSNs) provides a vast amount of check-in
data, which enables many services, e.g., point-of-
interest (POI) recommendation. In this paper, we
study the next new POl recommendation problem
in which new POIs with respect to users’ current lo-
cation are to be recommended. The challenge lies
in the difficulty in precisely leaming users’ sequen-
tial information and personalizing the recommen-
dation model. To this end, we resort to the Metric
Embedding method for the recommendation, which
avoids drawbacks of the Matrix Factorization tech-
nique. We propose a personalized ranking metric
embedding method (PRME) to model personalized
check-in sequences. We further develop a PRME-G

mation of users’ check-ins. The sequential behavior is impor-
tant for POl recommendation because human movement ex-
hibits sequential patterns [Ye er al., 2013). We verify users’
sequential behavior in the analysis of two real-world datasets,
Mecanwhile, we observe that users often visit new POls that
they have not been visited before. In this paper, we focus
on the Next New POl recommendation problem (simplified as
N2-POI recommendation), which is to recommend new POls
to be visited nexr given a user’s current location,

The challenge of N2.POI recommendation is to learn tran-
sitions of users’ check-ins that are commonly represented by
a firsteorder Markov chain model. Due to the sparse transie
tion data, it is difficult to estimate the transition probability in
Markov chain, especially for the unobserved transition. Fac-
torized Personalized Markov Chain (FPMC) [Rendle et al.,
2010] method has been used to calculalc the item transitions.

COALL® o lols LRy S it sy S




Factorizing Personalized Markov Chains

for Next-Basket Recommendation

Goal: Can we build better sequential
recommendation models by using the
iIdea of metric embeddings

Yu Vi ovs d(Yu, Vi)



Personalized Ranking Metric Embedding

for Next New POl Recommendation

Why would we expect this to work (or not)?
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Personalized Ranking Metric Embedding

for Next New POl Recommendation

Otherwise, goal is the same as the
previous paper:

Pu(t]))




Personalized Ranking Metric Embedding

for Next New POl Recommendation

Data
Dataset #User | #POI | #Check-in | Time range
FourSquare | 1917 | 2675 | 155365 08/2010-07/2011
Gowalla 4996 | 6871 | 245157 11/2009-10/2010




Personalized Ranking Metric Embedding

for Next New POl Recommendation

Qualitative analysis

—— FourSquare

Gowalla

e
)

Ratio of new POls
o o
=9 o

=
]

=

0 50 100 150 200 250 300 350
Number of days



Personalized Ranking Metric Embedding

for Next New POl Recommendation

Qualitative analysis
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Personalized Ranking Metric Embedding

for Next New POl Recommendation

Basic model (not personalized)

e 1X (1) =X )|I?
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Personalized Ranking Metric Embedding

for Next New POl Recommendation

Basic model (not personalized)

li >ie 1y < P(LilI7) > P(1;|I9)
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Personalized Ranking Metric Embedding

for Next New POl Recommendation

Personalized version
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Personalized Ranking Metric Embedding

for Next New POl Recommendation

Personalized version

5 B fo! if A(l, lc) > T
w,le,l = QDPI +(1— Q)DEC ;  otherwise



Personalized Ranking Metric Embedding

for Next New POl Recommendation

Learning

P(>u,£‘3 |®) =P ((Du,f,ﬂ,lj - Du,lﬂ,li) > O|@)
= 0(Du,ic,i; — Dujic,1;)
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Personalized Ranking Metric Embedding

for Next New POl Recommendation

Morals of the story:

* In some applications, metric embeddings might

be better than inner products
« Examples could include geographical data, but also

others (e.qg. playlists?)



Overview

Morals of the story:

« Today we looked at two main ideas that extend the
recommender systems we saw in class:

1. Sequential Recommendation: Most of the
dynamics due to time can be captured purely by
knowing the sequence of items

2. Metric Recommendation: In some settings, using
inner products may not be the correct assumption
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Recommender Systems

Real-world applications of

recommender systems



Recommending product sizes to customers

Novel and Practical

Vivek Sembium
Amazon Development Center India
viveksem@amazon.com

Atul Saroop
Amazon Development Center India
asaroop(@amazon.com

ABSTRACT

We propose a novel latent factor model for recommending product
size fits {Small, Fit, Large} to customers. Latent factors for cus-
tomers and products in our model correspond to their physical true
size, and are learnt from past product purchase and returns data.
The outcome for a customer, product pair is predicted based on the
difference between customer and product true sizes, and efficient
algorithms are proposed for computing customer and product true
size values that minimize two loss function variants. In experiments
with Amazon shoe datasets, we show that our latent factor models
incorporating personas, and leveraging retumn codes show a 17-21%
AUC improvement compared to baselines. In an online A/B test,
our algorithms show an improvement of 0.49% in percentage of Fit
transactions over control.

RecSys'17, August 27-31, 2017, Como, Italy

Recommending Product Sizes to Customers

Rajeev Rastogi
Amazon Development Center India
rastogi@amazon.com

Srujana Merugu’
srujana@gmail.com

In the size recommendation problem, a customer implicitly pro-
vides the context of a desired product by viewing the detail page of
a product and requires a recommendation for the appropriate size
variant of the product. For example, the customer might be viewing
the detail page of Nike Women's Tennis Classic shoe and needs to
choose from 10 different size variants corresponding to sizes from
6 to 15. Thus, given the context of a desired product, our objective
is to recommend the appropriate size variant for a customer.

The problem of recommending sizes to customers is challenging
due to the following reasons:

o Data sparsity. Typically, a small fraction of customers and
products account for the bulk of purchases. A majority of
customers and products have very few purchases.

o Cold start. The environment is highly dynamic with new
customers and nroducts (that have no nast nurchases) for




Recommending product sizes to customers

Goal: Build a recommender system
that predicts whether an item will “fit":

(u,7) — {small, fit, large }



Recommending product sizes to customers

Challenges:

« Data sparsity: people have very few

purchases from which to estimate size

« Cold-start: How to handle new

customers and products with no past
purchases?

* Multiple personas: Several customers

may use the same account



Recommending product sizes to customers

Data:
« Shoe transactions from Amazon.com

* For each shoe, we have a reported size
¢_j (from the manufacturer), but this may
not be correct!

 Need to estimate the customer’s size (s 1),
as well as the product’s true size (t ))



Recommending product sizes to customers

Loss function:

fw(Siatj) + b

fu(si tj) = w - (si — )



Recommending product sizes to customers

Loss function:

LY (41, fiy(si, 1) — bz) if y;; = Small
(LY1M(=1, fru(sis ) — b2)

+LPI (41, fu(sinty) — b1))  if gy = Fit
LP (=1, fou(sistj) = br) if y;; = Large

L(yij» fw(si tj)) =

A

L(yij, fw(si. tj)) =

1
Iog(1+e—fw(si,tj)+b2 )
1
(log( 1+efW(si’tj)_b2 )

1
+log(—ztame )

log(1—Aa +efw(-1i_»tj)—b1 )

if yi; = Small

ifyij =Fit
ifyij = Large




Recommending product sizes to customers

Loss function:

L(yij, fw(si,tj)) =

max{0,1 — fw(si,tj) + b2)}  if yij = Small
(max{0, 1+ f,,(si,tj) — b2)}

+max{0,1 - fi,(si,tj) + b1)})  ify;; = Fit
(max{0, 1 + fi(si, tj) —-b1)} ifyij = Large




Recommending product sizes to customers

Loss Value L(F'it, fy(si 1))

t; + (bll+ 1)/w tlj t; + (bgl— 1)/w

True Size s;

Figure 1: Hinge loss value for a Fit transaction vs s;.

Loss Value L{Large, fu(si, ;)

T T T
ti+ (b —1)/w t; ti+ (o + 1)/ w
True Size s;

Figure 3: Hinge loss value for a Large transaction vs s;.

Loss Value L(Small, f.,(si,;))

t+ (b= 1)/w t fj+ (b2 + 1)/w
True Size s;

Figure 2: Hinge loss value for a Small transaction vs s;.

Qverall Loss L;

True Size s;

Figure 4: Illustrative overall hinge loss vs s;.



Recommending product sizes to customers

Loss function:

~£i = Z maX{O, 1-— fw(si, tj) -+ bZ}
(i.j,yij) € DAy;;j=Small

+ Z (max{0,1 + f,(si, tj) — b2}
(i,j,yij) € DAy;j=Fit
+ max{0, 1 — fi,(si, tj) + b1})
n Z max{0, 1+ fiw(si,tj) — b1}

(i.j.yij)€DAyij=Large



Recommending product sizes to customers

Model fitting:




Recommending product sizes to customers

Extensions:
e Multi-dimensional sizes

wl(sil - tjl) + w2(8’i2 - tjz)

» Customer and product features

w(s; —t;) + ¢(x,i)w’

* User personas

C\V\ﬂ—@)\\j



Recommending product sizes to customers

Experiments:

Dataset Baseline Baseline Baseline Algorithm 1 Algorithm 1 Algorithm 1 Algorithm 1

Persona Persona Persona Persona
RF Linear RF Linear RF Linear RF
0.6% 0% 0% 16.4% 17.2% 17.9% 18.1%
B 2.1% 0.4% 2.1% 20.3% 21.3% 21.3% 20.5%
C 3.8% 1.9% 1.9% 15.7% 16.1% 18.4% 17.8%
D 2.7% 1.2% 1.6% 20.0% 20.2% 21.3% 20.7%
E 1.5% 0.2% 0.6% 15.8% 15.6% 17.4% 17.4%
F 2.5% 2.7% 2.3% 18.1% 17.3% 18.5% 17.3%

CRLQSM{AOJ



Recommending product sizes to customers

Experiments:

Online A/B test



Recommending product sizes to

customers

Morals of the story:

* Very simple model that actually works well in
production
* Only a single parameter per user and per item!



Playlist prediction via Metric Embedding
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ABSTRACT

Digital storage of personal music collections and clond-based
music services (e.g. Pandora, Spotify) have fundamentally
changed how music is consumed. In particular, automati-
cally generated playlists have become an important mode of
accossing large music collections. The key goal of automated
playlist generation is to provide the user with a coherent lis-
tening experience, In this paper, we present Latent Markov
Embedding (LME), a machine learning algorithm for gen-
erating such playlists, In analogy to matrix factorization
methods for collaborative fltering, the algorithn does not
require songs to be described by features a priori, but it
learns a representation from example playlists,. We formu-
late this problem as a regularized maximum-likelihood em-
bedding of Markov chains in Euclidian space, and show how

@ 5@7'1@4,%/3( <C

Playlist Prediction via Metric Embedding

Shuo Chen Joshua L. Moore Douglas Turnbull
Cornell University Cornell University Ithaca College
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
Ithaca, NY, USA .. lthaca, NY, USA Ithaca, NY, USA
shuochen@cs.cornell.edu  jimo@cs.cornell.edu dturnbull@ithaca.edu
Thorsten Joachims
Cornell University
Dept. of Computer Science
ithaca, NY, USA
tji@cs.cornell.edu

addition, when using a cloud-based service like Rhapsody
or Spotify, the consumer has instant on-demand access to
millions of songs. This has created substantial interest in
automatic playlist algorithms that can help consumers ex-
plore large collections of music. Companies like Apple and
Pandora have developed successful commercial playlist algo-
rithms, but relatively little is known about how these algo-
rithms work and how well they perform in rigorous evalua-
tions,

Despite the large commercial demand, comparably little
scholarly work has been done on automated methods for
playlist generation (e.g., [13, 4, 9, 11]), and the results to
date indicate that it is far from trivial to operationally de-
fine what makes a playlist coherent. The most comprehon-
sive study was done by [11]. Working under a model where




Playlist prediction via Metric Embedding

Goal: Build a recommender system
that recommends sequences of songs

Idea: Might also use a metric
embedding (consecutive songs should
be “nearby” in some space)



Playlist prediction via Metric Embedding

Basic model:
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(compare with metric model from last lecture)
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Playlist prediction via Metric Embedding

odel (“single point”):




Playlist prediction via Metric Embedding

“Dual-point” model
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Playlist prediction via Metric Embedding

Extensions:

 Popularity biases

o~ A pli= 1% 4,

> e—A(s;,pl =% +b,

Pr(p!|pl 1) =

l,\\j[\ ()m(w"\f ;Pj - Lr)f\ L
= Nore |,/w[j »Lc e

C =



Playlist prediction via Metric Embedding

Extensions:

 Personalization
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Playlist prediction via Metric Embedding

Extensions:

* Semantic Tags

1 1
Pr(X(s)|T(s)) =N (|T(3)| ZM(t), ﬁfd)




Playlist prediction via Metric Embedding

Extensions:

 Observable Features
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Playlist prediction via Metric Embedding

Experiments:

Yes.com playlists

* Dec 2010 — May 2011

“Small” dataset:

* 3,168 songs

* 134,431 + 1,191,279 transitions

“Large” dataset

« 9,775 songs

« 172,510 transitions + 1,602,079 transitions
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Experiments:

x Garth Brooks '
» Bob Marley ‘)
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» Michael Jackson
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Experiments:

Small Big
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Playlist prediction via Metric Embedding

Morals of the story:

« Metric assumption works well in settings other
than “geographical” data!

« However, they require some modifications in order
to work well (e.g. “start points” and “end points”)

 Effective combination of latent + observed
features, as well as metric + inner-product models
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Efficient Natural Language Response Suggestion
for Smart Reply

MATTHEW HENDERSON, RAMI AL-RFOU, BRIAN STROPE, YUN-HSUAN SUNG,
LASZLO LUKACS, RUIQI GUO, SANJIV KUMAR, BALINT MIKLOS, and
RAY KURZWEIL, Google

This paper presents a computationally efficient machine-leamned method for natural language response
suggestion. Feed-forward neural networks using n-gram embedding features encode messages into vectors
which are optimized to give message-response pairs a high dot-product value, An optimized search finds
response suggestions. The method is evaluated in a large-scale commercial e-mail application, Inbox by Gmail.
Compared to a sequence-to-sequence approach, the new system achieves the same quality at a small fraction of
the computational requirements and latency.

Additional Key Words and Phrases: Natural Language Understanding; Deep Leaming: Semantics; Email

1 INTRODUCTION

Applications of natural language understanding (NLU) are becoming increasingly interesting with
scalable machine learning, web-scale training datasets, and applications that enable fast and nuanced
quality evaluations with large numbers of user interactions.

Early NLU systems parsed natural language with hand-crafted rules to explicit semantic repre-
sentations, and used manually written state machines to generate specific responses from the output
of parsing [18]. Such systems are generally limited to the situations imagined by the designer, and
much of the development work involves writing more rules to improve the robustness of semantic




Efficient Natural Language Response

Suggestion for Smart Reply

Goal: Automatically suggest common
responses to e-mails

Smart Reply paper I O n v

Matthew Henderson to me ¢ Apr17 -
Do you think the abstract looks okay?

‘ #‘ Reply -

‘ | think it's fine. ‘ ‘ Looks good to me. It needs some work.
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Suggestion for Smart Reply

Basic setup

new email x

Trigger
suggestions?

yes

Response Response
selection - -+ set R and
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Suggestion for Smart Reply

Previous solution (KDD 2016)

« Based on a seg2seq method

Py | x) szyl,...,yn|w1,...,$m)
Hi:l PLSTM(yi | L1y ooy Ty Y1y oo oy yi—l)
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Suggestion for Smart Reply

Idea: Replace this (complex) solution with a
simple multiclass classification-based solution

P(z,y)
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Suggestion for Smart Reply

Idea: Replace this (complex) solution with a
simple multiclass classification-based solution
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Suggestion for Smart Reply

Model: S(x,y)
U(z) € RY
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Suggestion for Smart Reply

Model: Architecture v1

(S(:B, y) = Wh]

T

ReLU layer
h

( Rel.U layer )
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Suggestion for Smart Reply

Model: Architecture v2
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Suggestion for Smart Reply

Model: Extensions

[S(:c, y) = Wh]

ReLU layer
h

ReLU layer
ReLU layer
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Suggestion for Smart Reply

Model: Extensions

Message: Did you manage to print the document?

With response bias Without response bias
— Yes, I did. —It’s printed.
— Yes, it’s done. — I have printed it.

— No, I didn’t. — Yes, all done.
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Suggestion for Smart Reply

Experiments: (offline)

Batch Size Scoring Model P@1

25 Joint 49%
25 Dot-product 48%
50 Dot-product 52%
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Suggestion for Smart Reply

Experiments: (online)

Conversion Latency
System Experiment rate relative to relative to
Seq2Seq Seq2Seq
Exhaustive (1) Use a joint scoring model to score B 500%
search all responses in R.
) ':2:; llzgsses: dot-product then joint 67% 10%
Two pass
) Include response bias. 88% 10%
4) Improve sampling of dataset, and 1049 10%
use multi-loss structure. 0 ’
Single pass ) Remove second pass. 104% 2%
(6) Use hierarchical quantization for 104% 1%

search.




Efficient Natural Language Response

Suggestion for Smart Reply

Morals:

« Even a seemingly complex problem like natural-
language response generation can be cast as a
multiclass classification problem!

« Even a simple bag-of-words model proved to be
sufficient, no need to handle “grammar” etc.

« Also, no personalization (though to what extent
would this be possible with the data available?)




Overview

Morals:

 State-of-the-art recommender systems (whether
from academia or industry) are not so far from
what we learned in class

 All of them depended on some kind of maximum-
likelihood expression, along with gradient
ascent/descent!



