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Social networks




Social networks

We've already seen networks (a
little bit) in week 3

* i.e, we've studied inference problems defined on
graphs, and dimensionality reduction/community
detection on graphs
* Q: what do social & information networks look
like?
* Q: how can we build better models that are
tailored to the properties of social networks?



of pages

number

Social networks

 Social and information networks often follow power

laws, meaning that a few nodes have many of the
edges, and many nodes have a few edges
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Social networks
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Social networks

Social networks are small worlds: (almost) any node can
reach any other node by following only a few hops




Social networks

How can we characterize, model, and
reason about the structure of social
networks?

1. Models of network structure
2. Power-laws and scale-free networks, “rich-get-richer”
phenomena
3. Triadic closure and “the strength of weak ties”
4. Small-world phenomena
5. Hubs & Authorities; PageRank (maybe)



Social networks

How can we characterize, model, and
reason about the structure of social
networks?

 This topic is not discussed in Bishop, and is covered
only a little bit in Charle’s Elkan’s notes (Chapter 14)
 For this lecture | more closely followed Kleinberg &
Easley's book “Networks, Crowds, and Markets”
« (A pre-publication draft of) this book is available (for
free!) on the author’s webpage:
http://www.cs.cornell.edu/home/kleinber/networks-book/



http://www.cs.cornell.edu/home/kleinber/networks-book/

See also: entire classes devoted to this topic (maybe I'll
teach one some day...)

NETS 112 “"Networked Life”
(Michael Kearns @ UPenn)

ONLY\WENT|TO FIRST CLASS,
MIDTERM. AND FINAL

STILLGOT AN A

NETWORKED LIFE
Networked and Socia
Fall 2014

Tuesdays and Thursdays 10:30-12, Berger Auditorium, Skirkanich Hall
Prof Michael Kearns

ystems Engineering (NETS) 112

Jump to the course schedule

COURSE DESCRIPTION

« What science underlies companies like Facebook, Google, and Twitter?

« What are the economiics of email spam?

« Why do some social networking services take off, and others die?

« What do game theory and the Paris subway have to do with Internet routing?

« How does Google find what you're looking for... and exactly how do they maks maney doing s0?
« What structural properties might we expect any social network fo have?

« How might a social network influence election outcomes?

« What problems can be solved by crowdsourcing?

« How does your pasition in a social network (dis)advantage you?

Tooks at how our world is conmected - socially, strategically and technologically — and why it matters.

The answers to the questions above are related. They have been the subject of a fascinating intersection of disciplines, including computer science, physics,

psychology, sociology, mathematics, economics and finance. Researchers from these areas all sirive to quantify and explain the growing complexity and
connectivity of the world around us, and they have begun to develop a rich new science along the way.

will explore recent scientific efforts to explamn social, economic and technological structures -- and the way these structures mteract -- on
‘many different scales, from the behavior of individuals or small groups to that of complex networks such as the Internet and the global economy.

This course covers computer scicnce topics and other material that is mathematical, but all material will be presented in a way that is accessible fo an
educated audience with or without a strong technical background There will be
ample opportunitics for thosc of a quantitative bent to dig decper into the topics we cxamine. The majority of the course is grounded in scientific and
mathematical findings of the past two decades or less (often much less)

Fall 2014 is the cleventh offering of can get a detailed scnse for the course by visiting the extensive course web pages from past years
[Fall 2013] [Fall 2012] [Fall2011] [Spring 20101 bvnnw 20091 [Spring 2008] [Spring 20071 [Spring 2006] [Spring 20051 [Spring 20041

(Note: the Fall 2011 version used a different course management platform than the simple HTML site we'll be using this year, so it might be casicst to peruse
the 2013 and pre-2011 sites o get a sensc of how the course unfolds.)

There s also a greatly condensed version of this class offered to the general public as part of the online education platform Coursera. All Penn students
should create a (froc) Courscra account, and sign up for the scssion of Networked Life there that begins on Monday, Scptember 1, 2014. Sce the course
schedule for information on how we will make use of the online material and how to sign up.

s the flagship course for Penn Engineering’s recently launched Networked and Social Systems Engineering (NETS) program._ Throughout the
course we will foreshadow material that is covered in greater depth in later NETS program courses.

cs224w “"Social & Information Network Analysis”

(Jure Leskovec @ Stanford)

Important course information will be posted on this web page and announced in class. You are responsible for all material that appears here
and should check this page for updates frequently

9123: The first class will be held at :30am on Tuesday 923, in
The info sheet for the course is available: [Info Sheet]

9123 We will have 3 recitation sessions. Sessions will be video recorded and slides posted here:

1. SNAP.PY: Thursd Etpm "\Epmwn N idia AH[INDHIHH

2. Review of Probability: Friday, 9/26

5pm) in Gates BO1

3. Review of Linear Algebra: Friday, 10/3 (4 pm) in Gates B01

9/23: Homework 0 is out (due Oct. 2). [
9/25: Homework 1 is out (due Oct. 9).
1049: Solutions for Homework O have been pnstgd
10/9: Homework 2 is out (due Oct. 23) [’ ewol
10/14: Make sure you have ente e

|- Submission Template for

. Submission Template for HW1 [pdf | tex |
€]

2]. Submission Template for HW2 [pdf | tex |

10/14: Project proposals are due on Oct. 16 at 5:30am
10/16: Solutions for Homework 1 have been posted
10/23: Homework 3 is out (due Nov. ). [Home

10/29: Solutions for Homework 2 have been posted
1416 Homework 4 is out (due Nov. 20). [Home

11/13: Solutions for Homework 3 have been posted
12/4: Solutions for Homework & have been posted: [PT

Fl[Cede]
. Submission Template for HW3 [pdf | tex |
[Code]

Submission Template for HW [pdf | te:

We look forward to seeing you there!

- Solutions [P
] Solutions

]. Solutions [PDF][Code]

- Solutions: [




Definitions

1. Node degree

degree = 6 @

\

The node degree (in an undirected
network) of a node u is the number of

edges incident on u @
/ I | /  aut




Definitions

1. Node degree

* in_degree =2
out_degree = 4 @

T2

[ Ve —(

e Thein-degree (in a directed network) of a
node u is the number of edges (v 2 u)

« The out-degree of u is the number of edges

(u—->v)
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Definitions

2. Connected components

 If there is a path from (a->b) and from (b—>a) then they
belong to the same strongly connected component
 If there is a path from (a->b) or from (b—>a) then they
belong to the same weakly connected component
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Models of network structure




Network models

A basic problem in network modeling is
to define a random process that
generates networks that are similar to

those In the real world
(why?)
« To define a “null model”, i.e., to test assumptions about the
properties of the network
» To generate “similar looking” networks with the same
properties
« To extrapolate about how a network will look in the future



Network models

The simplest model:
Suppose we want a network with N nodes and E edges
* Create a graph with N nodes
* For every pair of nodes (i, j), connect them with probability p
 If we want the expected number of edges to be E, then we
should set

p=E/(})

* This is known as the “Erdos-Renyi” random graph model



Network models




Network models

Example of a graph generated by this
process (p = 0.01):

o

(picture from Wikipedia http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model)



http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model

Network models

The Erdos-Renyi model

* Do Erdos-Renyi graphs look “realistic”?
 e.g. what sort of degree distributions do they generate, and
are those similar to real-world networks?

p(deg(v) = k) = <N;(>,)>L (/‘/ Pj\H—k



Network models

The Erdos-Renyl model
p(deg(v) = k) = (" H)p*(1 —p)N-1-F

* What does the degree distribution of the graph look like as
N->infinity, but while (N-1)p remains constant
 In other words, what does the degree distribution converge to if
we fix the expected degree = ¢
« e



Network models

Recall(?): Poisson limit theorem

If n — oo and np — ¢ (with ¢ > 0) then
k

(n_n]é)!kgpk(l o p)n_k — e—c%

proof is “easy”: just apply Stirling’s approximation for large factorials:

nl ~ \/%(”)n

e

and simplify until you get the desired result




Network models

So, for large graphs, node degrees of an
Erdos-Renyi random model are Poisson

Poisson pmf:

AP
ﬂe
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distributed:

degree

Q: But is this actually
a realistic degree
distribution for real-
world networks?

(picture from Wikipedia http://en.wikipedia.org/wiki/Poisson_distribution)



http://en.wikipedia.org/wiki/Poisson_distribution

Network models

So, for large graphs, node degrees of an
Erdos-Renyi random model are Poisson
distributed:

=1
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Network models

Properties of Erdos-Renyi graphs

(results from Erdos & Renyi’s 1960 paper:
http://www.renyi.hu/~p erdos/1960-10.pdf)

expected degree

p—>0 for large n

+ If np < 1, then the graph will almost surely have no
connected components larger than O(log(N))
* If np = 1, then the graph will (almost surely) have a largest
connected component of size O(N*{2/3})
* Ifnpis a constant > 1, then the graph will have a single
“giant component” containing a constant fraction of the
vertices. No other component will contain more than
O(log(N)) vertices
 Various other obscure properties


http://www.renyi.hu/~p_erdos/1960-10.pdf

Network models

Which of these results is realistic?

« Glant components

(from Broder et al.s paper on the structure of the web graph,
WWW 2009: http://www9.org/w9cdrom/160/160.html)

Giant strongly
connected

component 7 b e
g

(the “bow-tie” and “tentacle” structure of the web)

Small
disconnected
components



http://www9.org/w9cdrom/160/160.html

Network models

Which of these results is realistic?

« Glant components
See other examples from the Stanford Network Analysis
Collection, e.qg.

« astrophysics citation network — 99% of nodes in largest
WCC, 37% of nodes in largest SCC
« astrophysics collaboration network — 95% of nodes in largest
WCC, 95% of nodes in largest SCC
« Wikipedia talk pages — 99% of nodes in largest WCC, 30% of

nodes in largest SCC



of pages
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Network models

In-degres

le+18

le+89

le+88
le+87

Which of these results is realistic?

 Poisson-distributed degree distribution?
Degree distributions of a few real-world networks:

_— note: log-log plots
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Network models

Which of these results is realistic?
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Network models

Which of these results is realistic?

« Real-world networks tend to have power-law degree
distributions

plx) =Cx™®

(plotting x against p(x) looks like a straight line on a log-log
plot)
 This is different from a Poisson distribution, which has a
mode of np



Network models

Which of these results is realistic?



Network models

Which of these results is realistic?

« For example, consider the difference between a road
network and a flight network:

A Danica Motorways
A Rychlosti silnice
M siice |, tidy
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power-law
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— Qantas/QantasLink

road network of the Czech Republic Qantas flight network

In the former, nodes have similar degrees; the latter is
characterized by a few important “hubs"

(pictures from www.sydos.cz and )



http://www.sydos.cz/

Network models

How can we design a model of network
formation that follows a power-law
distribution?

« We'd like a model of network formation that produces a
small number of “hubs”, and a long-tail of nodes with lower
degree
« This can be characterized by nodes being more likely to

connect to high-degree nodes



Network models

Preferential attachment models of
network formation

Consider the following process to generate a network (e.g. a
web graph):

1. Order all of the N pages 1,2,3,...N and repeat the following
process for each page:

2. Use the following rule to generate a link to another page:
a. With probability p, link to a random page ( <

b. Otherwise, choose a random page ( and link to the page
i links to



Network models

1. Order all of the N pages 1,2,3,...N and repeat the following
process for each page:

2. Use the following rule to generate a link to another page:
a. With probability p, link to a random page ( <

b. Otherwise, choose a random page ( and link to the page
i links to

EUU“ A




Network models

Preferential attachment models of
network formation

* This step is important:
"2b. Choose a random page ( and link to the page i links to”
« Critically, this will have higher probability of generating links
to pages that already have high degree
* |t can be rewritten as
“2b. Link to a random page ( in proportion to its degree’, i.e.,

p(link to i) = Z(jeci(;)(j)

* This phenomenon is referred to as “rich get richer”, i.e, a
page that already has many links is likely to get more




Network models

Preferential attachment models of
network formation

« Most importantly, networks created in this way exhibit
power-law distributions (in terms of their in-degree)
(proof is in Bollobas & Riordan, 2005)

 Specifically, the number of pages with k in-links is
distributed approximately according to 1/k” ¢, where ¢

grows as a function of p (i.e., the higher the probability that

we copy a link from another page, the more likely we are to

see extremely popular pages)



Network models

Other models of network formation
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« e.g. Kronecker graphs (Leskovec et al., 2010) — are built
recursively through Kronecker multiplication of some template
Intuitively, communities recursively form smaller “copies” of
themselves in order to build the complete network



Network models

So far...

« We've seen two models of network formation — Erdos Renyi
and Preferential Attachment

« Erdos Renyi captures some of the basic properties of real-
world networks (e.g. a single “giant component”) but fails to
capture power-law distributions, which are ubiquitous in real

networks

« Power-law distributions are characterized by the “rich-get-

richer” phenomenon — nodes are more likely to connect to
other nodes that are already of high degree



"Friendship paradox”

* What are the consequences of a highly
Imbalanced degree distribution?
* E.g. why does it seem that my friends

have more friends than | do?

« My co-authors have more citations than | do

* My sexual partners have had more sexual partners
than | have

. etc.



Explanation
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Explanation
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Explanation




Questions?

Further reading:
 Original Erdos-Renyi paper:
“On the evolution of random graphs” (Erdos & Renyji,
1960)

« Power laws:
“Power laws, Pareto distributions and Zipf's law”
(Newman, 2005)

« Easley & Kleinberg, Chapter 13 & 18



http://www.renyi.hu/~p_erdos/1960-10.pdf
http://dx.doi.org/10.1080/00107510500052444
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Triadic closure; strong & weak ties




So far we've seen (a little about)
how networks can be characterized
by their connectivity patterns

What more can we learn by looking
at higher-order properties, such as
relationships between triplets of
nodes?



Motivation

Q: Last time you found a job, was it
through:

* A complete stranger?
* Aclose friend?
* An acquaintance?

A: Surprisingly, people often find jobs through
acquaintances rather than through close friends
(Granovetter, 1973)



Motivation

 Your friends (hopefully) would seem to have the
greatest motivation to help you
« But! Your closest friends have limited information
that you don't already know about
 Alternately, acquaintances act as a “bridge” to a
different part of the social network, and expose you
to new information

This phenomenon is known as the strength of weak
ties



Motivation

« To make this concrete, we'd like to come up with
some notion of “tie strength” in networks

» To do this, we need to go beyond just looking at

edges in isolation, and looking at how an edge
connects one part of a network to another

Refs:
"The Strength of Weak Ties", Granovetter (1973): http://goo.gl/wVJVIN
"Getting a Job”", Granovetter (1974)



http://goo.gl/wVJVlN

Triangles

Triadic closure

Q: Which edge is most likely to form next in this
(social) network?

e
2

A: (b), because it creates a triad in the network

)
)



Triangles

“If two people in a social network have a friend in common, then
there is an increased likelihood that they will become friends
themselves at some point in the future” (Ropoport, 1953)

Three reasons (from Heider, 1958; see Easley & Kleinberg):

« Every mutual friend a between bik and camila gives them an
opportunity to meet
 If bik is friends with aliyah, then knowing that camila is friends
with aliyah gives bik a reason to trust camila
 If camila and bik don't become friends, this causes stress for
aliyah (having two friends who don't like each other), so there is
an incentive for them to connect



Triangles

The extent to which this is true is measured by the (local)
clustering coefficient:

« The clustering coefficient of a node ( is the probability that two
of i's friends will be friends with each other:

neighbours of i pai:; of neighbours that are edges
N 5((j,k)EE
O’i = Zj’ker(%) ((J ) ) (edges (j,k) and (k,j) are both
ki (k,,, _1) counted for undirected graphs)

degree of node i

« This ranges between 0 (none of my friends are friends with each
other) and 1 (all of my friends are friends with each other)



Triangles

The extent to which this is true is measured by the (local)
clustering coefficient:

« The clustering coefficient of the graph is usually defined as the
average of local clustering coefficients

C=- Z?:l Ci

on

 Alternately it can be defined as the fraction of connected
triplets in the graph that are closed (these do not evaluate to
the same thing!):

C = # of closed triplets " q
# of connected triplets 4 .q+ ./I



Next, we can talk about the role of edges in relation to the rest of
the network, starting with a few more definitions

1. Bridge edge

An edge (b,c) is a bridge edge if removing it would leave no path
between b and c in the resulting network



In practice, “bridges” aren’t a very useful definition, since there will
be very few edges that completely isolate two parts of the graph

2. Local bridge edge

An edge (b,c) is a local bridge if removing it would leave no edge
between b’s friends and c’s friends (though there could be more
distant connections)



Strong & weak ties

We can now define the concept of “strong” and “weak” ties (which
roughly correspond to notions of “friends” and “acquaintances”

3. Strong triadic closure property

If (a,b) and (b,c) are connected by strong ties, there must be at
least a weak tie between a and ¢



Strong & weak ties

Granovetter's theorem: if the strong triadic closure property is
satisfied for a node, and that node is involved in two strong ties,
then any incident local bridge must be a weak tie

local bridge

Proof (by contradiction): (1) b has two strong ties (to a and e); (2) suppose it has a strong tie to c
via a local bridge; (3) but now a tie must exist between ¢ and a (or c and e) due to strong triadic
closure; (4) so b & ¢ cannot be a bridge



Strong & weak ties

Granovetter's theorem: so, if we're receiving information from
distant parts of the network (i.e., via “local bridges”) then we must
be receiving it via weak ties

Q: How to test this theorem empirically on real data?
A: Onnela et al. 2007 studied networks of mobile phone calls

Defn. 1: Define the “overlap”
between two nodes to be
the Jaccard similarity
between their connections

_ I'()NT()
Oi,j — F(i)ul"(;)

neighbours of i

_ "local bridges”

Oi=0 Oi=1/3
:Vj Y v-’ ; ‘-\::L
Oi=2/3 Oi=1

=

B

have overlap O

(picture from

Onnela et al., 2007)



Strong & weak ties

Secondly, define the “strength” of a tie in terms of the number of
phone calls between ( and j

finding: the “stronger”

our tie, the more likely
there are to be

additional ties between

our mutual friends 8 | randomized strengths

0 M . M 2
0O 02 04 06 08 1
cumulative tie strength

(picture from Onnela et al., 2007)



Strong & weak ties

Another case study (Ugander et al., 2012)

Suppose a user receives four e-mail invites to join facebook from
users who are already on facebook. Under what conditions are we
most likely to accept the invite (and join facebook)?

1. If those four invites are from four close friends?
2. If our invites are from found acquiantances?
3. If the invites are from a combination of friends, acquaintances,
work colleagues, and family members?

hypothesis: the invitations are most likely to be adopted if
they come from distinct groups of people in the network



Strong & weak ties

Another case study (Ugander et al., 2012)

Let's consider the connectivity patterns amongst the people who
tried to recruit us

s\,\ \‘- [.:' {," ";j/f::’ F: 't _- -
= / ";x /) \ :%\\ 3 1l
% - ,,-/ // NN reachability

users recruiting 4 \ A\ between users
attempting to

/ recruit

Contact
nelghborhood

(picture from Ugander et al., 2012)



Strong & weak ties

Another case study (Ugander et al., 2012)

Let's consider the connectivity patterns amongst the people who
tried to recruit us
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< « Case 1: two users attempted to recruit
21.5—  y-axis: relative to recruitmentby a single user
> o [ 3 [ ] .
g * « finding: recruitments are more likely to succeed if they
01.0— .
® come from friends who are not connected to each other
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Contact
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(picture from Ugander et al., 2012)



Strong & weak ties

Another case study (Ugander et al., 2012)

Let's consider the connectivity patterns amongst the people who
tried to recruit us
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Strong & weak ties

So far;

Important aspects of network structure can be explained by
the way an edge connects two parts of the network to each
other:

« Edges tend to close open triads (clustering coefficient etc.)
« It can be argued that edges that bridge different parts of

the network somehow correspond to “weak” connections
(Granovetter; Onnela et al.)

« Disconnected parts of the networks (or parts connected by

local bridges) expose us to distinct sources of information
(Granovettor; Ugander et al.)



Structural balance

Some of the assumptions that we've seen today may not hold
if edges have signs associated with them

balanced: the edge imbalanced: the edge
a—>cis likely to form a—>c is unlikely to form

(see e.g. Heider, 1946)



Questions?

Further reading:

« Easley & Kleinberg, Chapter 3
« The strength of weak ties
(Granovetter, 1973)

* Bearman & Moody

“Suicide and friendships among American adolescents”

* Onnela et al.s mobile phone study
“Structure and tie strengths in mobile communication networks”

« Ugander et al's facebook study
“Structural diversity in social contagion”



http://goo.gl/wVJVlN
http://www.soc.duke.edu/~jmoody77/suicide_ajph.pdf
http://www.hks.harvard.edu/davidlazer/files/papers/Lazer_PNAS_2007.pdf
file:///C:/Users/julian/Downloads/PNAS-2012-Ugander-5962-6.pdf

