
Web Mining and

Recommender Systems

Tools and techniques for data

processing and visualization

Some helpful ideas for Assignment 2...

1. How can we crawl our own datasets

from the web?

2. How can we process those datasets

into structured objects?

3. How can we visualize and plot data

that we have collected?

4. What libraries can help us to fit

complex models to those datasets?

Some helpful ideas for Assignment 2...

1. How can we crawl our own datasets from the

web? → Python requests library + BeautifulSoup

2. How can we process those datasets into structured

objects? → A few library functions to deal with

time+date

3. How can we visualize and plot data that we have

collected? → Matplotlib

4. What libraries can help us to fit complex models to

those datasets? → Tensorflow

Web Mining and

Recommender Systems

Collecting and parsing Web data with

urllib and BeautifulSoup

Collecting our own datasets

Suppose that we wanted to collect data

from a website, but didn't yet have CSV

or JSON formatted data

• How could we collect new datasets in machine-

readable format?

• What Python libraries could we use to collect

data from webpages?

• Once we'd collected (e.g.) raw html data, how

could we extract structured information from it?

Collecting our own datasets

E.g. suppose we wanted to collect reviews of "The

Great Gatsby" from goodreads.com:
(https://www.goodreads.com/book/show/4671.The_Great_Gatsby)

https://www.goodreads.com/book/show/4671.The_Great_Gatsby

Collecting our own datasets

How could we extract fields including

• The ID of the user,

• The date of the review

• The star rating

• The text of the review itself?

• The shelves the book belongs to

Code: urllib

Our first step is to extract the html code of the webpage

into a python string. This can be done using urllib:

Note: url of "The Great
Gatsby" reviewsNote: acts like a file

object once opened

Reading the html data

This isn't very nice to look at, it can be easier to read in a

browser or a text editor (which preserves formatting):

Reading the html data

To extract review data, we'll need to look for the part of the

html code which contains the reviews:

Here it is (over 1000 lines into the page!)

Reading the html data

To extract review data, we'll need to look for the part of the

html code which contains the reviews:

• Note that each individual review

starts with a block containing the

text "<div id="review_…"

• We can collect all reviews by

looking for instances of this text

Code: string.split()

To split the page into individual reviews, we can use the

string.split() operator. Recall that we saw this earlier when

reading csv files:

Note: Ignore the first block,
which contains everything

before the first review
Note: the page contains

30 reviews total

Code: parsing the review contents

Next we have to write a method to parse individual reviews

(i.e., given the text of one review, extract formatted fields

into a dictionary)

Code: parsing the review contents

Let's look at it line-by-line:

• We start by building an empty dictionary

• We'll use this to build a structured version of the review

Code: parsing the review contents

Let's look at it line-by-line:

• The next line is more complex:

• We made this line by noticing that the stars appear in the html inside a span

with class " staticStars":

• Our "split" command then extracts everything inside the "title" quotes

Note: Two splits: everything after the
first quote, and before the second quote

Code: parsing the review contents

Let's look at it line-by-line:

• The following two lines operate in the same way:

• Again we did this by noting that the "date" and "user" fields appear inside

certain html elements:

Note: Everything between the
two brackets of this "<a" element

Code: parsing the review contents

Let's look at it line-by-line:

• Next we extract the "shelves" the book belongs to

• This follows the same idea, but in a "for" loop since there can be many shelves

per book:

• Here we use a try/except block since this text will be missing for users who

didn't add the book to any shelves

Note: Everything inside a
particular <div

Code: parsing the review contents

Next let’s extract the review contents:

Code: parsing the review contents

Now let’s look at the results:

• Looks okay, but the review

block itself still contains

embedded html (e.g. images

etc.)

• How can we extract just the

text part of the review?

The BeautifulSoup library

Extracting the text contents from the html review block

would be extremely difficult, as we'd essentially have to

write a html parser to capture all of the edge cases

Instead, we can use an existing library to parse the html

contents: BeautifulSoup

Code: parsing with BeautifulSoup

BeautifulSoup will build an element tree from the html

passed to it. For the moment, we'll just use it to extract the

text from a html block

The BeautifulSoup library

In principle we could have used BeautifulSoup to extract all

of the elements from the webpage

However, for simple page structures, navigating the html

elements is not (necessarily) easier than using primitive

string operations

Advanced concepts...

1. What if we have a webpage that loads content

dynamically?

(e.g. https://www.amazon.com/gp/profile/amzn1.account.AHQSDGUKX6

BESSVAOWMIAJKBOZPA/ref=cm_cr_dp_d_gw_tr?ie=UTF8)

• The page (probably) uses javascript to generate requests

for new content

• By monitoring network traffic, perhaps we can view and

reproduce those requests

• This can be done (e.g.) by using the Developer Tools in

chrome

http://BESSVAOWMIAJKBOZPA/ref=cm_cr_dp_d_gw_tr?ie=UTF8

Pages that load dynamically...

Scroll to bottom...

Pages that load dynamically...

Look at requests

that get generated

Pages that load dynamically...

Let's try to

reproduce this

request

Pages that load dynamically...

Advanced concepts...

2. What if we require passwords, captchas, or cookies?

• You'll probably need to load an actual browser

• This can be done using a headless browser, i.e., a

browser that is controlled via Python

• I usually use

splinter (https://splinter.readthedocs.io/en/latest/)

• Note that once you've entered the password, solved the

captcha, or obtained the cookies, you can normally

continue crawling using the requests library

https://splinter.readthedocs.io/en/latest/

Summary

• Introduced programmatic approaches to

collect datasets from the web

• The urllib library can be used to request

data from the web as if it is a file, whereas

BeautifulSoup can be used to convert the

data to structured objects

• Parsing can also be achieved using

primitive string processing routines

• Make sure to check the page's terms of

service first!

Parsing time and date data

Web Mining and

Recommender Systems

Time and date data

Dealing with time and date data can be difficult

as string-formatted data doesn't admit easy

comparison or feature representation:

• Which date occurs first, 4/7/2003 or 3/8/2003?​

• How many days between 4/5/2003 - 7/15/2018?​

• e.g. how many hours between 2/6/2013

23:02:38 - 2/7/2013 08:32:35?

Time and date data

{'business_id': 'FYWN1wneV18bWNgQjJ2GNg', 'attributes':

{'BusinessAcceptsCreditCards': True, 'AcceptsInsurance':

True, 'ByAppointmentOnly': True}, 'longitude': -111.9785992,

'state': 'AZ', 'address': '4855 E Warner Rd, Ste B9',

'neighborhood': '', 'city': 'Ahwatukee', 'hours': {'Tuesday':

'7:30-17:00', 'Wednesday': '7:30-17:00', 'Thursday': '7:30-

17:00', 'Friday': '7:30-17:00', 'Monday': '7:30-17:00'},

'postal_code': '85044', 'review_count': 22, 'stars': 4.0,

'categories': ['Dentists', 'General Dentistry', 'Health &

Medical', 'Oral Surgeons', 'Cosmetic Dentists',

'Orthodontists'], 'is_open': 1, 'name': 'Dental by Design',

'latitude': 33.3306902}

Most of the data we've seen so far include plain-text

time data, that we need to carefully manipulate:

Time and date data

• Time.strptime: convert a time string to a structured

time object

• Time.strftime: convert a time object to a string

• Time.mktime / calendar.timegm: convert a

time object to a number

• Time.gmtime: convert a number to a time object

Here we'll cover a few functions:

Time and date data

Time string Structured time
object

Number

strptime

strftime

mktime

/timegm

gmtime

21:36:18, 28/5/2019
time.struct_time(tm_year=201
9, tm_mon=5, tm_mday=28,

tm_hour=21, tm_min=36,

tm_sec=18, tm_wday=1,

tm_yday=148, tm_isdst=-1)

1464418800.0

Here we'll cover a few functions:

Concept: Unix time

Internally, time is often represented as a number,

which allows for easy manipulation and arithmetic

• The value (Unix time) is the number of seconds

since Jan 1, 1970 in the UTC timezone

• so I made this slide at 1532568962 = 2018-07-26

01:36:02 UTC (or 18:36:02 in my timezone)​

• But real datasets generally have time as a "human
readable" string​

• Our goal here is to convert between these two

formats

strptime

First, let's look at converting a string

to a structured object (strptime)

Time string Structured time
object

strptime

21:36:18, 28/5/2019
time.struct_time(tm_year=201
9, tm_mon=5, tm_mday=28,

tm_hour=21, tm_min=36,

tm_sec=18, tm_wday=1,

tm_yday=148, tm_isdst=-1)

Code: time.strptime()

Note: different time formatting
options in the help page

String-formatted time data

Note: this day is a Wednesday!

strptime

Strptime is convenient when we

want to extract features from data

• E.g. does a date correspond to a weekday or a

weekend?

• Converting month names or abbreviations (e.g.

"Jan") to month numbers

• Dealing with mixed-format data by converting it to

a common format

• But if we want to perform arithmetic on timestamps,

converting to a number may be easier

time.mktime and calendar.timegm

Structured time
object

Numbermktime /

timegm

time.struct_time(tm_year=201
9, tm_mon=5, tm_mday=28,

tm_hour=21, tm_min=36,

tm_sec=18, tm_wday=1,

tm_yday=148, tm_isdst=-1)

1464418800.0

For this we'll use mktime to convert our

structured time object to a number:

Code: time.mktime() and

calendar.timegm()

Structured time data from previous slide

Five days later

• time.mktime() allows us to convert our structured time

object to a number

• NOTE: mktime assumes the structure is a local time

whereas timegm assumes the structure is a UTC time

• This allows for easy manipulation, arithmetic, and
comparison (e.g. sorting) of time data

time.strftime and time.gmtime

Finally, both of these operations can

be reversed, should we wish to format

time data as a string or structure

Time string Structured time
object

Number
strftime gmtime

21:36:18, 28/5/2019
time.struct_time(tm_year=201
9, tm_mon=5, tm_mday=28,

tm_hour=21, tm_min=36,

tm_sec=18, tm_wday=1,

tm_yday=148, tm_isdst=-1)

1464418800.0

Code: time.strftime() and time.gmtime()

• These methods can be used to put adjusted times

back into string format

Five days later than the previous time

Web Mining and

Recommender Systems

Introduction to Matplotlib

Matplotlib

Matplotlib is a powerful library that can be

used to generate both quick visualizations,

as well as publication-quality graphics

• We'll introduce some of its most basic

functionality (via pyplot), such as bar

and line plots

• Examples (with code) of the types of

plots that can be generated are

available on https://matplotlib.org/

Examples from matplotlib.org:

https://matplotlib.org/

Code: generating some simple statistics

First, let's quickly compile some

statistics from (e.g.) Yelp's review data

Code: generating some simple statistics

Average ratings per day of week

Code: drawing a simple plot

[0,1,2,3,4,5,6]

Code: bar plots

• Looks right, but need to zoom in more to see the

detail

Code: bar plots

• Next let's add some details

Code: bar plots

plt.title()

plt.xlabel()

plt.ylabel()

plt.xticks()

Example: sliding windows

Also useful to plot data:

timestamp timestamp

ra
ti

n
g

ra
ti

n
g

BeerAdvocate, ratings over time BeerAdvocate, ratings over time

Scatterplot

Sliding window

(K=10000)

seasonal effects

long-term

trends

Code on:

http://jmcauley.ucsd.edu/code/week10.py

http://jmcauley.ucsd.edu/code/week10.py

Web Mining and

Recommender Systems

Gradient descent in tensorflow

Tensorflow

Tensorflow, though often associated with deep

learning, is really just a library that simplifies

gradient descent and optimization problems, like

those we've already implemented

Most critically, it computes gradients symbolically,

so that you can just specify the objective, and

Tensorflow can run gradient descent

Here we'll reimplement some of our previous

gradient descent code in tensorflow

Code: Gradient Descent in Tensorflow

Reading the data is much the same as before (except that we first import the

tensorflow library)

Code: Gradient Descent in Tensorflow

Next we extract features from the data

Note that we convert y to a native tensorflow vector. In particular we convert it to

column vector. We have to be careful about getting our matrix dimensions correct

or we may (accidentally) apply the wrong matrix operations.

Code: Gradient Descent in Tensorflow

Next we write down the objective – note that we use native tensorflow operations

to do so

Next we setup the variables we want to optimize – note that we explicitly indicate

that these are variables to be optimized (rather than constants)

Initialized to zero

Stochastic gradient descent optimizer with learning rate of 0.01

Specify the objective we want to optimize – note that no computation is
performed (yet) when we run this function

Code: Gradient Descent in Tensorflow

Boilerplate for initializing the optimizer...

We want to minimize the objective

Code: Gradient Descent in Tensorflow

Run 1,000 iterations of gradient descent:

Code: Gradient Descent in Tensorflow

Print out the results:

Summary

Note that in contrast to our "manual"

implementation of gradient descent, many of the

most difficult issues were taken care of for us:

• No need to compute the gradients –

tensorflow does this for us!

• Easy to experiment with different

models

• Very fast to run 1,000 iterations,

especially with GPU acceleration!

Other libraries

Tensorflow is just one example of a library that can be used

for this type of optimization. Alternatives include:

• Theano - http://deeplearning.net/software/theano/

• Keras - https://keras.io/

• Torch - http://torch.ch/

• Etc.

Each has fairly similar functionality, but some differences in

interface

http://deeplearning.net/software/theano/
https://keras.io/
http://torch.ch/

Questions?

