Python Data Products
Course 2: Design thinking and predictive pipelines

Lecture: Missing values
In this lecture we will...

- Introduce the issues around datasets with missing values
- Investigate different strategies for dealing with missing values in datasets
Motivation

• Even the simple PM2.5 dataset we introduced had missing values (indicated by "NA")
• So far we dealt with them simply by discarding those instances:

```
In [4]: dataset = [d for d in dataset if d[5] != 'NA']
```

• This was an okay strategy when dealing with a single feature where missing data was rare, but how would in generalize?
• In particular, this approach wouldn't work if many features might be missing
In this lecture we'll look at three strategies for dealing with missing data:

- **Filtering** (i.e., discarding missing values), as we discussed on the previous slide
- **Missing data imputation**: filling in the missing values with "reasonable" estimates
- **Modeling**: changing our regression/classification algorithms to handle missing data explicitly
Missing data imputation

Even in cases where only a small amount of data is missing, simply discarding instances may not be an option. What else can we do?

Missing data imputation seeks to replace missing values by reasonable estimates.
A simple scheme would be to replace every missing value with the **average** for that feature.

What are the consequences of such a scheme?

- The average may be sensitive to outlying values (though this could be addressed by using the **median** instead)
- The imputed value may or may not be "reasonable" (e.g. consider our "gender = male" feature)
Missing data imputation

Alternately we could consider more sophisticated data imputation schemes

- Rather than imputing using the mean, does it make more sense to compute the mean of a certain subgroup (e.g. if "height" is missing, can we impute using the average height of users with the same gender?)
- We could also train a separate predictor to impute the missing values (though this is complex if there are missing values for many different features)
How can we directly model the missing values within a regression or classification algorithm?

- One simple scheme: add an **additional feature** indicating that a value is missing
- e.g.:

 `feature = [1, 0, 0]` for “female”
 `feature = [0, 1, 0]` for “male”
 `feature = [0, 0, 1]` for “feature missing”
Modeling missing data

What predictions does the model make under this scheme?

feature = [1, 0, 0] for “female”
feature = [0, 1, 0] for “male”
feature = [0, 0, 1] for “feature missing”

$$\theta \cdot \text{feature} = \theta_0$$ for female
$$= \theta_1$$ for male
$$= \theta_2$$ for “feature missing”

Note that θ_2 learns what value should be predicted when this feature is missing
Summary of concepts

• Discussed some simple schemes for dealing with missing data
• Introduced the ideas of **data imputation** and **modeling missing data**

On your own...

• Extend our previous code (on pm2.5 levels vs. air temperature) to handle missing features (other than the pm2.5 measurement itself)
• Experiment with different missing data imputation schemes and note their effect on performance