Python Data Products
Course 4: Implementing and Deploying data-driven predictive systems

Lecture: Implementing a similarity-based recommender
Learning objectives

In this lecture we will...

• Implement a simple recommender system that recommends products based on the Jaccard similarity
First we read the data. Note we use a larger dataset for this exercise, though could use a smaller one if running time is an issue.

```python
In [1]: import gzip
from collections import defaultdict
import random
import numpy
import scipy.optimize

In [2]: path = "/home/jmcauley/datasets/mooc/amazon/amazon_reviews_us_Musical_Instruments_v1_00.tsv.gz"

In [3]: f = gzip.open(path, 'rt', encoding="utf8")

In [4]: header = f.readline()
header = header.strip().split('	')
```
Our goal is to make recommendations of products based on users’ purchase histories. The only information needed to do so is **user and item IDs**

Code: Reading the data

```python
In [5]: dataset = []

In [6]: for line in f:
   ...:     fields = line.strip().split('\t')
   ...:     d = dict(zip(header, fields))
   ...:     d['star_rating'] = int(d['star_rating'])
   ...:     d['helpful_votes'] = int(d['helpful_votes'])
   ...:     d['total_votes'] = int(d['total_votes'])
   ...:     dataset.append(d)

In [7]: dataset[0]
```

```
Out[7]: {'marketplace': 'US',
   'customer_id': '45610553',
   'review_id': 'RMDCJWWWY50Z9',
   'product_id': 'B00HH62V86',
   'product_parent': 'G18218723',
   'product_title': 'AGPtek® 10 Isolated Output 9V 12V 18V Guitar Pedal Board Power Supply Effect Pedals with Isolated Short Cricuit / Overcurrent Protection',
```
To perform set intersections/unions efficiently, we first build data structures representing the set of items for each user and users for each item.

```python
In [8]: # Useful data structures

In [9]: usersPerItem = defaultdict(set)
   ...: itemsPerUser = defaultdict(set)

In [10]: itemNames = {}

In [11]: for d in dataset:
   ...:     user, item = d['customer_id'], d['product_id']
   ...:     usersPerItem[item].add(user)
   ...:     itemsPerUser[user].add(item)
   ...:     itemNames[item] = d['product_title']
```
The Jaccard similarity implementation follows the definition directly:

$$\text{Jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

In [12]:
```python
def Jaccard(s1, s2):
    numer = len(s1.intersection(s2))
    denom = len(s1.union(s2))
    return numer / denom
```
We want a recommendation function that return **items similar to a candidate item i**. Our strategy will be as follows:

- Find the set of users who purchased i
- Iterate over all other items other than i
- For all other items, compute their similarity with i *(and store it)*
 - Sort all other items by (Jaccard) similarity
 - Return the most similar
Now we can implement the recommendation function itself:

```python
In [13]:
def mostSimilar(i):
    similarities = []
    users = usersPerItem[i]
    for i2 in usersPerItem:
        if i2 == i: continue
        sim = Jaccard(users, usersPerItem[i2])
        similarities.append((sim, i2))
    similarities.sort(reverse=True)
    return similarities[:10]
```

\[
\text{Jaccard}(U_i, U_j) = \frac{|U_i \cap U_j|}{|U_i \cup U_j|}
\]
Next, let’s use the code to make a recommendation. The query to the system is just a product ID:

```python
In [14]: dataset[2]
Out[14]: {'marketplace': 'US',
            'customer_id': '6111003',
            'review_id': 'RIZR6JXKUDBI0',
            'product_id': 'B0006VMBHI',
            'product_parent': '603261968',
            'product_title': 'AudioQuest LP record clean brush',
            'product_category': 'Musical Instruments',
            'star_rating': 3,
            'helpful_votes': 0,
            'total_votes': 1,
            'vine': 'N',
            'verified_purchase': 'Y',
            'review_headline': 'Three Stars',
            'review_body': 'removes dust. does not clean',
            'review_date': '2015-08-31'}
```

```python
In [15]: query = dataset[2]['product_id']
```
Next, let’s use the code to make a recommendation. The query to the system is just a product ID:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In [16]:</td>
<td>mostSimilar(query)</td>
</tr>
<tr>
<td>Out[16]:</td>
<td>[(0.02846389496717725, 'B00006I5SD'), (0.0169415254237288, 'B00006I5SB'), (0.015065913370998116, 'B000AJR482'), (0.01420454545454545, 'B00E7MVP3S'), (0.008955223880597015, 'B001255YL2'), (0.008849557522123894, 'B003EIRVO8'), (0.00833333333333333, 'B0015VEZ22'), (0.00821917808219178, 'B00006I5UH'), (0.008021390374331552, 'B00008BWM7'), (0.007656967840735069, 'B000H2BC4E')]</td>
</tr>
</tbody>
</table>
Finally, let’s look at the items that were recommended:

In [17]: itemNames[query]

Out[17]: 'AudioQuest LP record clean brush'

In [18]: [itemNames[x[1]] for x in mostSimilar(query)]

Out[18]: ['Shure SFG-2 Stylus Tracking Force Gauge',
 'Shure M97xE High-Performance Magnetic Phono Cartridge',
 'ART Pro Audio DJPRE II Phono Turntable Preamplifier',
 'Signstek Blue LCD Backlight Digital Long-Playing LP Turntable Stylus Force Scale Gauge Tester',
 'Audio Technica AT120E/T Standard Mount Phono Cartridge',
 'Technics: 45 Adaptor for Technics 1200 (SFWE010)',
 'GruvGlide GRUVGLIDE DJ Package',
 'STANTON MAGNETICS Record Cleaner Kit',
 'Shure M97xE High-Performance Magnetic Phono Cartridge',
 'Behringer PP400 Ultra Compact Phono Preamplifier']
Our implementation was not very efficient. The slowest component is the iteration over all other items:

- Find the set of users who purchased \(i \)
- **Iterate over all other items other than \(i \)**
 - For all other items, compute their similarity with \(i \) *(and store it)*
 - Sort all other items by (Jaccard) similarity
 - Return the most similar

This can be done more efficiently as most items will have no overlap.
In fact it is sufficient to iterate over **those items purchased by one of the users who purchased i**

- Find the set of users who purchased i
- **Iterate over all users who purchased i**
 - Build a candidate set from all items those users consumed
 - For items in this set, compute their similarity with i *(and store it)*
 - Sort all other items by (Jaccard) similarity
 - Return the most similar
Our more efficient implementation works as follows:

```python
In [19]: def mostSimilarFast(i):
    similarities = []
    users = usersPerItem[i]
    candidateItems = set()
    for u in users:
        candidateItems = candidateItems.union(itemsPerUser[u])
    for i2 in candidateItems:
        if i2 == i: continue
        sim = Jaccard(users, usersPerItem[i2])
        similarities.append((sim,i2))
    similarities.sort(reverse=True)
    return similarities[:10]
```
Code: Faster recommendation

Which ought to recommend the same set of items, but much more quickly:

In [20]: mostSimilarFast(query)

Out[20]: [(0.028446389496717725, 'B00006I5SD'),
 (0.01694915254237288, 'B00006I5SB'),
 (0.015065913370998116, 'B000AJR482'),
 (0.01420454545454544, 'B00E7MVP3S'),
 (0.008955223880597015, 'B001255YL2'),
 (0.008849557522123894, 'B003EIRVO8'),
 (0.00833333333333333, 'B0015VEZ22'),
 (0.00821917808219178, 'B00006I5UH'),
 (0.008021390374331552, 'B00008BWM7'),
 (0.007656967840735069, 'B000H2BC4E')]
Summary of concepts

• Implemented a similarity-based recommender based on the Jaccard similarity
• Showed how to make our implementation more efficient

On your own...

• Our code recommends *items* that are similar to a given item. Adapt it to recommend *users* who are similar to a given user
• Typically we want to recommend items similar to one to which a user has already given a high rating (e.g. “you’ll like X because you liked Y”). Adapt our code so that it takes as input a given *user*, and recommends items similar to those that user liked