Python Data Products
Course 2: Design thinking and predictive pipelines

Lecture: Features from temporal data
Learning objectives

In this lecture we will...

- Investigate different strategies for extracting features from temporal (or seasonal) data
- Extend the concept of one-hot-encodings to represent temporal information
Motivating examples

How would we build regression models that incorporate features like:

• How do sales (or preferences) vary over time?
• What are the **long term** trends of sales?
• What are the **short term** trends (e.g. day of the week, season, etc.)
Motivating examples

E.g. How do ratings vary with time?
Motivating examples

E.g. How do ratings vary with time?

• In principle this picture looks okay (compared our previous lecture on categorical features) – we’re predicting a real valued quantity from real valued data (assuming we convert the date string to a number)
• So, what would happen if (e.g. we tried to train a predictor based on the month of the year)?
Motivating examples

E.g. How do ratings vary with time?

• Let’s start with a simple feature representation, e.g. map the month name to a month number:

\[
\text{rating} = \theta_0 + \theta_1 \times \text{month} \quad \text{where} \quad \begin{align*}
\text{Jan} &= [0] \\
\text{Feb} &= [1] \\
\text{Mar} &= [2] \\
\text{etc.} &
\end{align*}
\]
Motivating examples

The model we’d learn might look something like:

\[\text{rating} = \theta_0 + \theta_1 \times \text{month} \]
Motivating examples

This seems fine, but what happens if we look at multiple years?

\[\text{rating} = \theta_0 + \theta_1 \times \text{month} \]
This seems fine, but what happens if we look at multiple years?

- This representation implies that the model would “wrap around” on December 31 to its January 1st value.
- This type of “sawtooth” pattern probably isn’t very realistic.
Modeling temporal data

What might be a more realistic shape?

\[\text{rating} = \theta_0 + \theta_1 \sin(\alpha + \text{month} \times 30) \]
Fitting some periodic function like a sin wave would be a valid solution, but is difficult to get right, and fairly inflexible.

- Also, it’s not a linear model

- Q: What’s a class of functions that we can use to capture a more flexible variety of shapes?
- A: Piecewise functions!
We’d like to fit a function like the following:
Fitting piecewise functions

In fact this is very easy, even for a linear model! This function looks like:

\[
\text{rating} = \theta_0 + \theta_1 \times \delta(\text{is Feb}) + \theta_2 \times \delta(\text{is Mar}) + \theta_3 \times \delta(\text{is Apr}) \ldots
\]

Note that we don’t need a feature for January
i.e., \(\theta_0 \) captures the January value, \(\theta_0 \) captures the difference between February and January, etc.
Fitting piecewise functions

Or equivalently we’d have features as follows:

\[\text{rating} = \theta \cdot x \quad \text{where} \]

\[x = [1,1,0,0,0,0,0,0,0,0,0,0] \text{ if February} \]
\[[1,0,1,0,0,0,0,0,0,0,0,0] \text{ if March} \]
\[[1,0,0,1,0,0,0,0,0,0,0,0] \text{ if April} \]
\[\ldots \]
\[[1,0,0,0,0,0,0,0,0,0,0,1] \text{ if December} \]
Fitting piecewise functions

Note that this is still a form of one-hot encoding, just like we saw in the “categorical features” lecture

• This type of feature is very flexible, as it can handle complex shapes, periodicity, etc.
• We could easily increase (or decrease) the resolution to a week, or an entire season, rather than a month, depending on how fine-grained our data was
Concept: Combining one-hot encodings

We can also extend this by combining several one-hot encodings together:

\[
\text{rating} = \theta \cdot x = \theta \cdot [x_1; x_2]
\]

where

\[
x_1 = [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] \text{ if February}
\]
\[
[1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] \text{ if March}
\]
\[
[1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] \text{ if April}
\]
\[
\ldots
\]
\[
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] \text{ if December}
\]

\[
x_2 = [1,0,0,0,0,0] \text{ if Tuesday}
\]
\[
[0,1,0,0,0,0] \text{ if Wednesday}
\]
\[
[0,0,1,0,0,0] \text{ if Thursday}
\]
\[
\ldots
\]
Summary of concepts

• Motivated the use of piecewise functions to model temporal data
• Described how one-hot encodings can be used to model piecewise functions

On your own...

• Think about what piecewise functions you might use to model demand on Amazon
 • Is the day of the week important?
 • Or the day of the month?
• How would you incorporate significant holidays (which may influence demand) into this model?