Python Data Products Course 3: Making Meaningful Predictions from Data

Lecture: Evaluating classifiers for ranking

Learning objectives

In this lecture we will...

- Extend our classifier from the previous lecture in order to evaluate its ranking performance
- Demonstrate the precision, recall, and F1 ranking measures

Code example: Precision and Recall

Let's start where we left off in the previous lecture. Previously, we had computed values for the number of **True Positives (TP), False Positives, True Negatives, and False Negatives:**

In [44]: TP = sum([(p and l) for (p,l) in zip(predictions, y_class)])
FP = sum([(p and not l) for (p,l) in zip(predictions, y_class)])
TN = sum([(not p and not l) for (p,l) in zip(predictions, y_class)])
FN = sum([(not p and l) for (p,l) in zip(predictions, y_class)])

Code example: Precision and Recall

First, we can use these values to compute the precision and recall:

In [50]: precision = TP / (TP + FP) In [51]: recall = TP / (TP + FN) In [52]: precision, recall Out[52]: (0.9688901639458971, 0.9921113722343231) precision = $\frac{|\{relevant documents\} \cap \{retrieved documents\}|}{|\{retrieved documents\}|}$

 $recall = \frac{|\{relevant documents\} \cap \{retrieved documents\}|}{|\{relevant documents\}|}$

Code example: Precision and Recall

And the F1-score:

Out[54]: 0.9803632810702313

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Code example: Sorting scores by confidence

Next we want to sort our predictions by confidence. First we obtain the **confidences** from the model:

In [55]: help(model) to the object (II delined Methods inherited from sklearn.linear model.base.LinearClassifierMixin: decision function(self, X) modict confidence for samples. Scores Note: confidence The confidence score for a sample is th scores are equivalent sample to the hyperplane. to $X_i \cdot \theta$. Parameters X : {array-like, sparse matrix}, shape = (n samples, n features) Samples. Returns array, shape=(n samples,) if n classes == 2 else (n samples, n classes) Confidence scores per (sample, class) combination. In the binary confidence scope for calf classes [1] where NO means this

Code example: Sorting scores by confidence

Then we sort them along with the labels:

In [56]: confidences = model.decision_function(X)

In [57]: confidences

Out[57]: array([4.27180659, 5.34068692, 7.88047918, ..., 6.77652788, 5.7457588, 1.72125511])

In [58]: confidencesAndLabels = list(zip(confidences,y_class))

In [59]: confidencesAndLabels

Out[59]: [(4.271806590458448, True), (5.340686923174397, True), (7.880479181532099, True), (5.224256954963243, True), (6.436088979353579, True), (12.960106079412048, True), (5.318764178069046, True), (6.235572902486643, True), (5.305301082711418, True).

In [60]: confidencesAndLabels.sort()
 confidencesAndLabels.reverse()

Code example: Sorting scores by confidence

At this point we can **discard** the confidences:

In [62]: labelsRankedByConfidence = [z[1] for z in confidencesAndLabels]

In [63]:	labelsRankedByConfidence
Out[63]:	[True,
	True,
	Truo

Code example: Precision@K and Recall@K

Now we can compute Precision@K and Recall@K values:

In [64]:	<pre>def precisionAtK(K, y_sorted): return sum(y_sorted[:K]) / K</pre>
In [65]:	<pre>def recallAtK(K, y_sorted): return sum(y_sorted[:K]) / sum(y_sorted)</pre>
In [66]:	precisionAtK(50, labelsRankedByConfidence)
Out[66]:	1.0
In [67]:	precisionAtK(1000, labelsRankedByConfidence)
Out[67]:	1.0
In [68]:	precisionAtK(10000, labelsRankedByConfidence)
Out[68]:	0.998

Code example: Precision@K and Recall@K

Now we can compute Precision@K and Recall@K values:

In [69]:	recallAtK(50, labelsRankedByConfidence)
Out[69]:	0.0003582483090679812
In [70]:	recallAtK(1000, labelsRankedByConfidence)
Out[70]:	0.007164966181359624
In [71]:	recallAtK(10000, labelsRankedByConfidence)
Out[71]:	0.07150636248996904

Summary of concepts

• Showed how to compute the precision, recall, and F1score on our sentiment classification example

On your own...

 Adapt the code to compute a precisionrecall curve, i.e., plot precision@k and recall@k values for each value of k