CSE 258, Fall 2018: Midterm

Name: ___________________________ Student ID: ________________________

Instructions
The test will start at 6:40pm. Hand in your solution at or before 7:40pm. Answers should be written directly in the spaces provided.

Do not open or start the test before instructed to do so.

Note that the final page contains some algorithms and definitions. Total marks = 26
Section 1: Regression and Ranking (6 marks)

Suppose you wanted to predict Air Quality measurements (generally measured using an index of particulate matter called ‘PM2.5’) for a large city. Suppose you have a dataset containing thousands of hourly measurements to do so. Examples of previous measurements look like:

<table>
<thead>
<tr>
<th>Observation</th>
<th>Date</th>
<th>Time</th>
<th>PM2.5</th>
<th>Temp (c)</th>
<th>Wind sp. (km/h)</th>
<th>wind direction</th>
<th>humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10/03/2004</td>
<td>18.00</td>
<td>150</td>
<td>24.4</td>
<td>4.1</td>
<td>NNW</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>10/03/2004</td>
<td>19.00</td>
<td>112</td>
<td>22.8</td>
<td>5.8</td>
<td>NW</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>10/03/2004</td>
<td>20.00</td>
<td>88</td>
<td>20.7</td>
<td>2.2</td>
<td>NW</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>10/03/2004</td>
<td>21.00</td>
<td>80</td>
<td>16.5</td>
<td>4.4</td>
<td>NNN</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>10/03/2004</td>
<td>22.00</td>
<td>51</td>
<td>15.5</td>
<td>2.1</td>
<td>W</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>10/03/2004</td>
<td>23.00</td>
<td>38</td>
<td>12.8</td>
<td>0.4</td>
<td>W</td>
<td>83</td>
</tr>
<tr>
<td>7</td>
<td>11/03/2004</td>
<td>00.00</td>
<td>31</td>
<td>11.8</td>
<td>0.6</td>
<td>SW</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>11/03/2004</td>
<td>01.00</td>
<td>31</td>
<td>10.9</td>
<td>1.3</td>
<td>S</td>
<td>69</td>
</tr>
</tbody>
</table>

1. Both the time and the date could be useful for this type of prediction. Suggest a scheme for representing the date and time, and write down the resulting features for the first two observations (2 marks).

A: 1:
2:

2. Similarly, suppose you wanted to incorporate the wind direction and wind speed into your predictor. Describe your encoding and write down the features of the first two datapoints (2 marks).

A: 1:
2:

3. (Critical thinking) Even though we’ve solved a regression problem above, suppose that you only cared about predicting a binary outcome, namely whether PM2.5 > 50 on a given day. Consider the following two options for solving this problem:

(a) Train a regressor \(f(X) \rightarrow \mathbb{R} \) as we have done above, and predict ‘True’ whenever the output of the regressor is greater than 50

(b) Train an SVM classifier \(f(X) \rightarrow \{0, 1\} \) (using the same features) based on the binary outcome

Are these two approaches equivalent? Briefly explain why or why not, and if not, which you would expect to obtain better performance (i.e., accuracy) on this task and why (2 marks).

A: No, not equivalent. For the regressor, 250 vs. 200 is same as 0 vs. 50, not an error. Regressor is not minimizing # of errors.
Section 2: Classification and Diagnostics (9 marks)

Suppose you wish to build a classifier to detect malicious e-mails (e.g. spam, phishing, etc.). You collect 10,000 e-mails, and obtain ground-truth labels indicating which e-mails are malicious (i.e., malicious e-mails are labeled True). You then train three classifiers, whose performance is as follows:

<table>
<thead>
<tr>
<th>Classifier 1:</th>
<th>Classifier 2:</th>
<th>Classifier 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>False Positives 150</td>
<td>False Positives 3828</td>
<td>False Positives 843</td>
</tr>
<tr>
<td>False Negatives 21</td>
<td>False Negatives 6</td>
<td>False Negatives 40</td>
</tr>
<tr>
<td>True Positives 35</td>
<td>True Positives 50</td>
<td>True Positives 16</td>
</tr>
<tr>
<td>True Negatives 9794</td>
<td>True Negatives 6135</td>
<td>True Negatives 9101</td>
</tr>
</tbody>
</table>

4. How many of the 10,000 instances have a positive label (i.e., \(y_i = \text{True} \)) (1 mark)?
A: \(TP + FN = 21 + 35 \)

5. How many of the 10,000 instances have a positive prediction for Classifier 1 (i.e., \(f(X) = \text{True} \)) (1 mark)?
A: \(TP + FP = 25 + 150 \)

6. Compute the following statistics for Classifier 1. You can leave your results as unsimplified expressions (2 marks):
 - Accuracy:
 A: \(\frac{TP + TN}{10000} \)
 - BER:
 A: \(1 - \frac{1}{2} \left(\frac{\frac{TP}{TN+FP}}{\frac{TN}{TN+FP}} \right) \)
 - Precision:
 A: \(\frac{TP}{TP + FP} \)
 - Recall:
 A: \(\frac{TP}{TP + FN} \)

Which of the three classifiers would you select if your goal is to optimize the measures below? Assume that content where the prediction is positive is filtered/Blocked (e.g. moved to a spam folder). **Briefly state your reasoning for each answer.** (1 mark each).

7. The classifier with the highest accuracy:
 A: \(TP + TN = C_1 \)

8. The classifier that lets the fewest malicious e-mails through the filter:
 A: \(\text{lowest} \ FN = C_2 \)

9. The classifier that filters the fewest non-malicious e-mails:
 A: \(\text{lowest} \ FP = C_1 \)

10. (Critical thinking) You train a classifier based on the 5,000 most common words in spam e-mails (i.e., you use a 5,000 dimensional feature vector with binary features indicating which common words appear in each e-mail). You use half of your data for training and half for testing. After training the classifier you diagnose the following issues:
 - The classifier has strong training performance, but weak performance on the test set.
 - Even though the classifier has high accuracy, the classifier identifies nearly all spam e-mails as ‘non-spam’

Suggest steps you might take to address the above issues (e.g. modifications to your classifier or features, etc.) (2 marks):
1) Overfitting \rightarrow regularizing or use a smaller dictionary

2) Dataset imbalance \rightarrow use a balanced classifier
Section 3: Clustering / Communities (5 marks)

Suppose you collect a dataset of taxi rides in New York, containing pickup and dropoff locations, among other features. After generating a scatterplot of the data you obtain the following result:

Suppose your goal is to predict the total tip that a given fare will receive. You consider three alternative techniques to incorporate the geographical location into your model:

• (Grid:) Split the data into a grid (using latitude and longitude values), and include a feature indicating which grid position each datapoint belongs to.

• (Nearest Neighbor:) For each new trip, identify the ‘most similar’ trip in the training data in terms of the distance between start and end locations. Predict the tip for the new trip to be the same as the tip for this previous trip (this is known as ‘nearest neighbor’ classification).

• (Clustering:) Run a clustering algorithm (e.g. k-means or hierarchical clustering) to obtain feature representations of each point.

11. Suggest one reason why clustering the data might be preferable to each of the ‘grid’ or ‘nearest neighbor’ models (2 marks):

| Versus Grid: | Grid could be not granular enough in busy regions. Clustering could add more clusters in dense regions. |
| Versus Nearest Neighbor: | Absolute coordinates matter (long trip in city ≠ long trip in suburbs), but NN ignores coordinates. |

12. (Design thinking) In addition to geographical features, suggest (at least three) additional features that may be useful in predicting tip amounts (3 marks):

A:
- total pre-tip cost
- speed
- time of day / day of week

²Scatterplot taken from a previous CSE258 assignment on taxi tip prediction.
13. You want to implement a feature of the form ‘you’ll like X because you liked Y,’ that is based on maximizing the cosine similarity between ratings of the items X and Y, and only makes a recommendation if (a) the user’s rating of Y is ≥ 4 stars, and (b) the user hasn’t already rated X. Under this system, what would be the top recommendation for Prateek? Show which comparisons you considered (2 marks)

A:

You want to make a simple recommender that identifies the ‘all time best’ books, using a model of the form

\[
\text{rating}(i) = \alpha + \beta_i.
\]

Here \(\alpha \) is a global term, and \(\beta_i \) is an item bias. You fit your model by setting \(\alpha \) to the global mean of all ratings, and \(\beta_i \) to be the remainder. Finally, you make recommendations simply by identifying those items with the highest bias terms, i.e.,

\[
\text{argmax}_i \beta_i.
\]

14. What item would receive the highest ranking according to this global recommender (1 mark)?

A: I2

highest av.

15. (Critical Thinking) Suppose you wanted to design a recommender system to estimate the compatibility between candidates and job openings. Describe what data you would collect from users, how you would model the problem, and any issues that make this problem different or unique compared to those we saw in class (3 marks).

A:

| Data: | qualifications (user) | requirements (job) | interactions one-to-one, one-to-many | adjacency |

| Model: | Similarity (Jaccard) on interactions + classification on features w/ ensemble | issues: sparse - very few job per person, new users (how to recommend w/o job history) |
Precision: \[
\frac{|\text{relevant documents} \cap \text{retrieved documents}|}{|\text{retrieved documents}|}
\]
Recall: \[
\frac{|\text{relevant documents} \cap \text{retrieved documents}|}{|\text{relevant documents}|}
\]
Balanced Error Rate (BER):
\[
\frac{1}{2}(\frac{TP}{TP + FP} + \frac{TP}{TP + FN})
\]
F-score: \[
2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}
\]
Jaccard similarity:
\[
\text{Sim}(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]
Cosine similarity:
\[
\text{Sim}(A, B) = \frac{A \cdot B}{\|A\|\|B\|}
\]

Algorithm 1 Hierarchical clustering

Initially, every point is assigned to its own cluster

while there is more than one cluster do

Compute the center of each cluster

Combine the two clusters with the nearest centers

Algorithm 2 K-means

Initialize every cluster to contain a random set of points

while cluster assignments change between iterations do

Assign each \(X_i\) to its nearest centroid

Update each centroid to be the mean of points assigned to it

Write any additional answers/corrections/comments here: