Stereo
(Part 2)

Computer Vision I
CSE 252A
Lecture 9
Announcements

• Homework 3 is due Nov 5, 11:59 PM
• Reading:
 – Chapter 7: Stereopsis
Stereo Vision Outline

• Offline: Calibrate cameras & determine “epipolar geometry”
• Online
 1. Acquire stereo images
 2. Rectify images to convenient epipolar geometry
 3. Establish correspondence
 4. Estimate depth
Determine Epipolar Geometry

- **Essential matrix**
 - Linear estimate
 - From point correspondences in normalized coordinates
 - Enforce constraints
 - Singular values are (1, 1, 0)

- **Fundamental matrix**
 - Linear estimate (with data normalization)
 - Data normalize point correspondences
 - Estimate data normalized fundamental matrix
 - Enforce constraints
 - Smallest singular value is zero
 - Data denormalize data normalized, constraint enforced fundamental matrix
Rectification
Given a pair of images, transform both images so that epipolar lines are scan lines.
Rectification

Under perspective projection, the mapping from a plane to a plane is given by a projective transformation (aka homography).

\[
\begin{bmatrix}
 x_L \\
 y_L \\
 w_L
\end{bmatrix}
= H_L
\begin{bmatrix}
 u_L \\
 v_L \\
 1
\end{bmatrix}
\]
Rectification

Under perspective projection, the mapping from a plane to a plane is given by a projective transformation (aka homography).

\[
\begin{bmatrix}
 x_L \\
y_L \\
w_L
\end{bmatrix} = H_L \begin{bmatrix}
u_L \\
v_L \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
x_r \\
y_r \\
w_r
\end{bmatrix} = H_R \begin{bmatrix}
u_r \\
v_r \\
1
\end{bmatrix}
\]

Two images – Two homographies
Epipolar Rectification

- Create pair of virtual cameras
 - Virtual cameras have the same camera centers as real cameras
 - Both virtual cameras have the same:
 - Camera rotation matrix R
 - Camera calibration matrix K
- Rectification transformation matrices
 $$H = K_{\text{virtual}} R_{\text{virtual}} R_{\text{real}}^T K_{\text{real}}^{-1}$$
Image pair rectification

Simplify stereo matching by warping the images

Apply projective transformation so that epipolar lines correspond to horizontal scanlines

H should map epipole e to (1,0,0), a point at infinity
H should minimize image distortion

Note that rectified images usually not rectangular
See Text for complete method

\[
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} = He
\]
Rectification
Given a pair of images, transform both images so that epipolar lines are scan lines.

Input Images
Rectification
Given a pair of images, transform both images so that epipolar lines are scan lines.

Rectified Images
See Section 7.2.1 for specific method
Rectification
Rectification

• Epipolar lines
Rectification
Polar Rectification

Homography-based Rectification

Polar Rectification

Alternative epipolar rectification method that minimizes pixel distortion
Polar Rectification

Epipoles are in images (white dot on ball)

Homography-based rectification is not possible
Features on same epipolar line
Dense Correspondence:
A Photometric constraint

• A point in the world has same intensity in both images (Constant Brightness Constraint)
 – This applies when scene is Lambertian and tangent plane is parallel to image plane
Mobi: Stereo-based navigation
Epipolar correspondence
Symbolic Map
Using epipolar & constant Brightness constraints for stereo matching

For each epipolar line
 For each pixel in the left image
 • compare with every pixel on same epipolar line in right image
 • pick pixel with minimum match cost
 • This will never work, so:

 match windows

(Seitz)
Finding Correspondences

$W(p_1)$

$W(p_r)$
Next Lecture

• Early vision: multiple images
 – Stereo

• Reading:
 – Chapter 7: Stereopsis