Welcome
Course info

• Stefan Savage
 – Web: http://www.cs.ucsd.edu/~savage
 – E-mail: savage@cs.ucsd.edu
 – Office hours: Th 2-3pm (or by appt, or drop by)
 CSE 3106

• Ariana Mirian: TA

• Course Web pages (mostly empty now)
 – http://www.cse.ucsd.edu/classes/fa19/cse227-a/
This is a class that is perpetually “in progress”
About me

▪ I work primarily on applied computer security research

▪ Research
 – I’m director of the Center for Networked Systems (CNS) on campus and the Center for Evidence Based Security Research (evidencebasedsecurity.org) w/UCSD and UCB.
 – Lots of work on security measurement, ecrime, security of cyberphysical systems (esp cars and planes)

▪ Policy
 – National Research Council’s Cybersecurity Research group
 – Institute for Defense Analysis’ ISAT advisory group
 – National Science Foundation CISE Advisory Committee
 – Way too much time in D.C.
 – I co-teach the graduate cybersecurity policy class in GPS

▪ Industry
 – Asta Networks (defunct anti-DDoS company)
 – Netsift (UCSD-originated worm defense company) -> Cisco
 – A fair amount of consulting...
How I got into security...

- Originally OS kernels...
 and networking...
- Came to Security by accident
 - Misbehaving TCP receivers – think like a bad guy
 - DDoS traceback – in response to 2000 attacks
- Startup and...
 - synchronicity (David Moore @ UCSD found indirect evidence of spoofed DoS attacks, hmmm... general analysis possible)
 Startup was a huge failure, analysis technique was golden
- Code Red
 - Same technique allowed measuring worm outbreaks
 - Interest * opportunity snowballed...
What are we (UCSD) known for in security?

- **Measurement**
 - Cybercrime: Malware, spam, captcha solving, ad fraud, account abuse, etc
 - Attacks: worms, scanning, ddos, breaches
 - Defenses: threat intelligence, cyber hygiene

- **Embedded security**
 - Vulnerabilities in automobiles, voting machines, airplanes, credit card skimmers, medical devices

- **Web security and PLsec**
 - Cookies, information flow

- **Intersection of crypto and sec**

- Check out cryptosec.ucsd.edu (also sysnet.ucsd.edu)
Goals and non-goals of this course

▪ **Goals**
 - Learn how to read papers; not just for content but context (why does this paper exist?)
 - Explore range of current problems and tensions in modern computer security
 - Understand how to identify security issues in your own work and how to address them
 - Figure out if security is an area of interest for you
 - Get feet wet in security research (research project)

▪ **Non-goals**
 - Review of all standard security mechanisms
 ▪ Read a textbook or take CSE127
 - Significant examination of applied cryptography
 ▪ Take one of our great crypto courses
Readings

- There is **no textbook** for this class
 - We’ll read a bunch of papers and occasionally from some books

- However, in general I recommend:
 - Security Engineering by Ross Anderson
 Free!

- For those who want some general “backup”, check out
 - *The Craft of System Security*
 - Authors: Sean W. Smith, John Marchesini
Topics we’ll be covering

- Human factors/usability
- Measurement/analysis studies
- System design/implementation
 - Protection, small TCB, etc
- Information exposure
 - Privacy, anonymity, side & covert channels
- Software vulnerabilities & malware
 - Vulnerability research, viruses, botnets, defenses, etc
- I’m open to more topics... got any?
The work in this class

- Reading
 - Lots of it and we expect you to do it for class discussion

- Discussion in class
 - The papers and concepts we’ve covered
 - 15% of grade is participation

- Project
 - This is the purpose of the class (85% of grade)

No other homework, midterm, or final
Projects

▪ Some kind of *research project* in security

▪ Best in a group of 2-3
 – If you can’t find partner(s) let us know and we can try to help

▪ Please try to form group by Oct 8th
 – Send me and Ariana e-mail identifying your group members by then

▪ Initial project proposals due Oct 15th
 – One page
 – What you would like to do, why it is interesting, how you plan to do it, what the challenges/risks are (and/or what resources you need)
 – We will go over proposals and ok project or help you refine

▪ Ultimately 6 pages and short talk (10-15mins)
 – High standards: we’ve published well over a dozen papers from this class
Some class project alumni...
Generally speaking

- **Most projects will fall into the category of:**

 - **Analysis:** evaluate the security of a system of interest
 - **Attack:** identify some new attack/vulnerability, develop/test it and discuss the possible ramifications, mitigations, etc
 - **Measurement:** measure some aspect of adversarial behavior (real or potential), user behavior, code behavior, characterize it, explore its limits, etc
 - **Design/Implementation:** design and/or build a new system that addresses a problem in a new way
Things to think about…

- Pick good problems
 - Why is this problem interesting or will become interesting?
 - Look at what others are doing:
 - Non-academic conferences: BlackHat, Defcon, HITB, ShmooCon, INFILTRATE, various blogs

- Pick problems that are achievable
 - What resources would you need to investigate the problem?

- Think about how to evaluate your work
Random ideas

- On the class Web page (shortly)
 - This is not a list you must pick from!
 - Just examples to give you ideas and make sure you understand how broad the scope is
Resources for projects

- Data: lots of spam, malware, various kinds of traffic traces
- Computing: servers, network bandwidth
- Equipment: telescope, DSLR camera, lots of low-level stuff in the embedded lab (scopes, probes, etc), fingerprinting supplies
- Lots of experience in doing unusual things

- If there is something you need to do your project and you’re not sure how to get it – ask.
Questions about project?
What is security?

- Merriam-Webster online dictionary:

 Function: *noun*
 1: the quality or state of being *secure*: as
 a: freedom from danger: *SAFETY*
 b: freedom from fear or anxiety
 c: freedom from the prospect of being laid off
 <job security>
 2 a: something given, deposited, or pledged to make certain the fulfillment of an obligation
 b: *SURETY*
 3: an instrument of investment in the form of a document (as a stock certificate or bond) providing evidence of its ownership
 4 a: something that *secures*: *PROTECTION*
 b (1): measures taken to guard against espionage or sabotage, crime, attack, or escape
 (2): an organization or department whose task is security
Computer security?

- Most of computer science is about providing **functionality**:
 - UX/UI
 - Software Architecture
 - Algorithms
 - Operating Systems/Networking/Databases
 - Compilers/PL
 - Microarchitecture
 - VLSI/CAD

- Computer security is **not** about functionality

- It is about how the embodiment of functionality behaves **in the presence of an adversary**

- Holistic property
 - “Software security is about integrating security practices into the way you build software, not integrating security features into your code” – Gary McGraw
History: two competing philosophies

- **Binary** model [secure vs insecure]
 - Traditional crypto and trustworthy systems
 - Assume adversary limitations X and define security policy Y
 - If Y cannot be violated without needing X then system is secure, else insecure
 - You know people are invoking some version of this model if they say “proof of security”, “secure by design” “trustworthy systems”

- **Risk management** model. [more secure vs less secure]
 - Most commercial software development
 (and much real-world security... e.g., terrorism)
 - Try to minimize biggest risks and threats
 - Improve security where most cost effective (expected value)
 - You know people are in this model if they use the words “risk”, “mitigation”, “defenses”, “resilience”, etc.
Classic example (binary model): perfect substitution cipher

$p_1\ p_2\ p_3\ \ldots\ p_n$

$\oplus b_1\ b_2\ b_3\ \ldots\ b_n$

$c_1\ c_2\ c_3\ \ldots\ c_n$

- Invited by combination of Vernam & Mauborgne (~1919)
- Choose a string of random bits the same length as the plaintext, XOR them to obtain the ciphertext.
- **Perfect Secrecy** (proved by Claude Shannon)
 - Probability that a given message is encoded in the ciphertext is unaltered by knowledge of the ciphertext
 - Proof: Give me any plaintext message and any ciphertext and I can construct a key that will produce the ciphertext from the plaintext. Zero information in ciphertext
Classic example (risk management): Concrete barricades

- Prevent incursion by car bombers
Problems with the binary model: Abstract design != Concrete artifact

- Many assumptions are **brittle** in real systems
 - Real artifacts fragile, imperfect, have bugs/limitations
 - Don’t do precisely what spec says or documentation says
 - E.g., what is an integer?
 - Large gap between abstraction and implementation
 - Example: secret key in chip used to decrypt data; key leaks via the current the chip draws for different operations
Problems with the binary model: security evolution

- As engineers, we often delude ourselves into thinking that we understand our own creations
 - or that we can create complex systems to do only what we meant them to do
- But ... nobody knows how these systems really work
 - Complexity of computer systems is approaching complexity of biological organisms
 - 3 billion base pairs in human genome
 - 10+ billion transistors in modern CPUs
- Complex systems co-evolve with attacks against them
 - How we use systems, how we depend on them and how they might be attacked – all change over time
 - Systems deemed secure today may not be resilient to new threats
Problems with the risk management model: One vulnerability can matter...
Problems with the risk management model: You never win

- Creates arms race – forced co-evolution

 Adversary invents new attack

 Defender creates new defense

- The best you can hope for is **stalemate**
Problems with the risk management model: How to measure

- It's fine to say security is a spectrum, but how to evaluate risk or reward?
 - How many units of security does your anti-virus product give you?

- Big question: how do we measure security?
 - How is this different from car safety?
 - Or drug safety?
Key meta issues in Security

- Policy
- Assets, Risks & Threats
- Value
- Protection
- Deterrence
Policy

- What is a bad thing?

- Remarkably tricky to define for known threats
 - The software on your computer likely has 100s of security options... How should you set them?
 - What might be a good security policy for who gets to access faculty salary data?

- Even harder for unknown threats
 - SPAM

- Should a highly privileged user have more rights on a system or less?
Assets, Risks & threats

- **Assets**
 - What you want to protect

- **Threats**
 - Actions likely to cause damage, harm or loss
 - Includes both kinds of attacks (e.g., virus, social engineering) and kinds of attackers (e.g., script kiddie vs state sponsored actor)
 - Need to reason about requirements of each threat (what capabilities does the attacker need) and what it enables (what harm might come? What motivations might drive such a threat)

- **Risk**
 - What is the potential likelihood of a something bad happening (i.e., what threats are likely)

- These tend to be well formalized in some communities (e.g. finance sector) and less in others (e.g. energy sector)
- We’ll talk more about threat models next class...
Value

- What is the cost if the bad thing happens?
- What is the cost of preventing the bad thing?

- Example: credit card fraud
 - Who pays if someone steals your credit card # and buys a TV with it?

- Example: Permissive Action Links for nuclear weapons
Protection

- The mechanisms used to protect resources against threats
 - This is most of academic and industrial computer security

- Many classes of protections
 - Cryptographic protection of data
 - Software guards
 - Communication guards
 - User interface design (protect user against own limitations)

- Can be either proactive or reactive
Deterrence

- There is some non-zero expectation that there is a future cost to doing a bad thing
 - i.e. going to jail, having a missile hit your house, having your assets seized, etc
 - Criminal cost-benefit: \(M_b + P_b > O_{cp} + O_{cm} P_a P_c \) [Clark&Davis 95]
 - \(M_b \): Monetary benefit
 - \(P_b \): Psychological benefit
 - \(O_{cp} \): Cost of committing crime
 - \(O_{cm} \): Monetary cost of conviction
 - \(P_a \): Probability of getting caught
 - \(P_c \): Probability of conviction

- Need meaningful forensic capabilities
 - Audit actions, assign identity to evidence, etc
 - Must be cost effective relative to positive incentives
That’s it for today

- For next time, read
 - Low-level Software Security by Example
 - Exploit Programming: From Buffer Overflows to “Weird Machines”

- Write down questions you have as reading

- Also, spend a few minutes looking into the background of the authors and the citations and ask yourself:
 - Why are they writing this paper? Why them? Why then? Why there?