
CSE 158
Web Mining and Recommender Systems

Midterm recap

Midterm on Wednesday!

• 5:10 pm – 6:10 pm

• Closed book – but I’ll

provide a similar level

of basic info as in the

last page of previous

midterms

CSE 158
Web Mining and Recommender Systems

Week 1 recap

Supervised versus unsupervised learning

Learning approaches attempt to

model data in order to solve a problem

Unsupervised learning approaches find

patterns/relationships/structure in data, but are not

optimized to solve a particular predictive task

• E.g. PCA, community detection

Supervised learning aims to directly model the

relationship between input and output variables, so that the

output variables can be predicted accurately given the input

• E.g. linear regression, logistic regression

Linear regression

Linear regression assumes a predictor

of the form

(or if you prefer)

matrix of features

(data) unknowns

(which features are relevant)

vector of outputs

(labels)

Regression diagnostics

Mean-squared error (MSE)

Representing the month as a feature

How would you build a feature to

represent the month?

Representing the month as a feature

Occam’s razor

“Among competing hypotheses, the one with

the fewest assumptions should be selected”

Regularization

Regularization is the process of

penalizing model complexity during

training

How much should we trade-off accuracy versus complexity?

Model selection

A validation set is constructed to

“tune” the model’s parameters

• Training set: used to optimize the model’s

parameters

• Test set: used to report how well we expect the

model to perform on unseen data

• Validation set: used to tune any model

parameters that are not directly optimized

Regularization

Model selection

A few “theorems” about training,

validation, and test sets

• The training error increases as lambda increases

• The validation and test error are at least as large as

the training error (assuming infinitely large

random partitions)

• The validation/test error will usually have a “sweet

spot” between under- and over-fitting

CSE 158
Web Mining and Recommender Systems

Week 2

Classification

Will I purchase

this product?

(yes)

Will I click on

this ad?

(no)

Classification

What animal appears in this image?

(mandarin duck)

Classification

What are the categories of the item

being described?

(book, fiction, philosophical fiction)

Linear regression

Linear regression assumes a predictor

of the form

matrix of features

(data) unknowns

(which features are relevant)

vector of outputs

(labels)

Regression vs. classification

But how can we predict binary or

categorical variables?

{0,1}, {True, False}

{1, … , N}

(linear) classification

We’ll attempt to build classifiers that

make decisions according to rules of

the form

In week 2

1. Naïve Bayes
Assumes an independence relationship between

the features and the class label and “learns” a

simple model by counting

2. Logistic regression
Adapts the regression approaches we saw last

week to binary problems

3. Support Vector Machines
Learns to classify items by finding a hyperplane

that separates them

Naïve Bayes (2 slide summary)

=

Naïve Bayes (2 slide summary)

Double-counting: naïve Bayes vs Logistic

Regression

Q: What would happen if we

trained two regressors, and

attempted to “naively”

combine their parameters?

Logistic regression

sigmoid function:

Logistic regression

Training:

should be maximized

when is positive and

minimized when is

negative

= 1 if the argument is true, = 0 otherwise

Logistic regression

Logistic regression

Q: Where would a logistic regressor place the

decision boundary for these features?

b

positive

examples

negative

examples

easy to

classify
easy to

classify

hard to

classify

Logistic regression

• Logistic regressors don’t optimize

the number of “mistakes”

• No special attention is paid to the

“difficult” instances – every instance

influences the model

• But “easy” instances can affect the

model (and in a bad way!)

• How can we develop a classifier that

optimizes the number of mislabeled

examples?

Support Vector Machines

such that

“support vectors”

Summary

The classifiers we’ve seen in Week 2 all

attempt to make decisions by

associating weights (theta) with

features (x) and classifying according to

Summary

• Naïve Bayes
• Probabilistic model (fits)

• Makes a conditional independence assumption of

the form allowing us to

define the model by computing

for each feature

• Simple to compute just by counting

• Logistic Regression
• Fixes the “double counting” problem present in

naïve Bayes

• SVMs
• Non-probabilistic: optimizes the classification

error rather than the likelihood

Which classifier is best?

1. When data are highly imbalanced
If there are far fewer positive examples than negative

examples we may want to assign additional weight to

negative instances (or vice versa)

e.g. will I purchase a

product? If I

purchase 0.00001%

of products, then a

classifier which just
predicts “no”

everywhere is

99.99999% accurate,

but not very useful

Which classifier is best?

2. When mistakes are more costly in

one direction
False positives are nuisances but false negatives are

disastrous (or vice versa)

e.g. which of these bags contains a weapon?

Which classifier is best?

3. When we only care about the

“most confident” predictions

e.g. does a relevant

result appear

among the first

page of results?

Evaluating classifiers

decision boundary

positivenegative

Evaluating classifiers

Label

true false

Prediction

true

false

true

positive

false

positive

false

negative

true

negative

Classification accuracy = correct predictions / #predictions

= (TP + TN) / (TP + TN + FP + FN)

Error rate = incorrect predictions / #predictions

= (FP + FN) / (TP + TN + FP + FN)

Week 2

• Linear classification – know what the different

classifiers are and when you should use each of

them. What are the advantages/disadvantages of

each

• Know how to evaluate classifiers – what should you

do when you care more about false positives than

false negatives etc.

CSE 158 – Lecture 10
Web Mining and Recommender Systems

Week 3

Why dimensionality reduction?

Goal: take high-dimensional data,

and describe it compactly using a

small number of dimensions

Assumption: Data lies

(approximately) on some low-

dimensional manifold
(a few dimensions of opinions, a small number of

topics, or a small number of communities)

Principal Component Analysis

rotate

discard lowest-

variance

dimensions
un-rotate

Principal Component Analysis

Construct such vectors from 100,000

patches from real images and run PCA:

Color:

Principal Component Analysis

• We want to find a low-dimensional

representation that best compresses or

“summarizes” our data

• To do this we’d like to keep the dimensions with

the highest variance (we proved this), and

discard dimensions with lower variance.

Essentially we’d like to capture the aspects of

the data that are “hardest” to predict, while

discard the parts that are “easy” to predict

• This can be done by taking the eigenvectors of

the covariance matrix (we didn’t prove this, but

it’s right there in the slides)

Clustering

Q: What would PCA do with this data?

A: Not much, variance is about equal

in all dimensions

Clustering

But: The data are highly clustered

Idea: can we compactly

describe the data in terms

of cluster memberships?

K-means Clustering

cluster 3 cluster 4

cluster 1

cluster 2

1. Input is

still a matrix

of features:

2. Output is a

list of cluster

“centroids”:

3. From this we can

describe each point in X

by its cluster membership:

f = [0,0,1,0]
f = [0,0,0,1]

K-means Clustering

1. Initialize C (e.g. at random)

2. Do

3. Assign each X_i to its nearest centroid

4. Update each centroid to be the mean

of points assigned to it

5. While (assignments change between iterations)

(also: reinitialize clusters at random should they become empty)

Greedy algorithm:

Hierarchical clustering

[0,1,0,0,0,0,0,0,0,0,0,0,0,0,1]

[0,1,0,0,0,0,0,0,0,0,0,0,0,0,1]

[0,1,0,0,0,0,0,0,0,0,0,0,0,1,0]

[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0]
[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0]

[0,0,1,0,0,0,0,0,0,0,1,0,0,0,0]

membership @

level 2

membership @

level 1

A: We’d like a representation that encodes that points

have some features in common but not others

Q: What if our clusters are hierarchical?

Hierarchical clustering

Hierarchical (agglomerative) clustering

works by gradually fusing clusters whose

points are closest together

Assign every point to its own cluster:

Clusters = [[1],[2],[3],[4],[5],[6],…,[N]]

While len(Clusters) > 1:

Compute the center of each cluster

Combine the two clusters with the nearest centers

1. Connected components

Define communities in terms of sets of

nodes which are reachable from each other

• If a and b belong to a strongly connected component then

there must be a path from a → b and a path from b → a

• A weakly connected component is a set of nodes that

would be strongly connected, if the graph were undirected

2. Graph cuts

What is the Ratio Cut cost of the

following two cuts?

3. Clique percolation

1. Given a clique size K

2. Initialize every K-clique as its own community

3. While (two communities I and J have a (K-1)-clique in common):

4. Merge I and J into a single community

• Clique percolation searches for “cliques” in the

network of a certain size (K). Initially each of these

cliques is considered to be its own community

• If two communities share a (K-1) clique in

common, they are merged into a single community

• This process repeats until no more communities

can be merged

Week 3

• Clustering & Community detection – understand

the basics of the different algorithms

• Given some features, know when to apply PCA

vs. K-means vs. hierarchical clustering

• Given some networks, know when to apply

clique percolation vs. graph cuts vs. connected

components

CSE 158
Web Mining and Recommender Systems

Week 4

Definitions

Or equivalently…

users

items

= binary representation of items purchased by u

= binary representation of users who purchased i

Recommender Systems Concepts

• How to represent rating /

purchase data as sets/matrices

• Similarity measures (Jaccard,

cosine, Pearson correlation)

• Very basic ideas behind latent

factor models

Jaccard similarity

A B

→ Maximum of 1 if the two

users purchased exactly the

same set of items
(or if two items were purchased by the

same set of users)

→ Minimum of 0 if the two users

purchased completely

disjoint sets of items
(or if the two items were purchased by

completely disjoint sets of users)

Cosine similarity

(vector representation of

users who purchased
harry potter)

(theta = 0) → A and B point in

exactly the same direction

(theta = 180) → A and B point

in opposite directions (won’t

actually happen for 0/1 vectors)

(theta = 90) → A and B are

orthogonal

Pearson correlation

Compare to the cosine similarity:

Pearson similarity (between users):

Cosine similarity (between users):

items rated by both users average rating by user v

Rating prediction

user item

how much does

this user tend to

rate things above

the mean?

does this item tend

to receive higher

ratings than others

e.g.

Latent-factor models

my (user’s)

“preferences”
HP’s (item)

“properties”

CSE 158
Web Mining and Recommender Systems

Misc. questions

Misc. Qs

Misc. Qs

Misc. Qs

