
CSE 158 – Lecture 6
Web Mining and Recommender Systems

Community Detection



Dimensionality reduction

Goal: take high-dimensional data, 

and describe it compactly using a 

small number of dimensions

Assumption: Data lies 

(approximately) on some low-

dimensional manifold
(a few dimensions of opinions, a small number of 

topics, or a small number of communities)



Principal Component Analysis

rotate

discard lowest-

variance 

dimensions
un-rotate



Clustering

Q: What would PCA do with this data?

A: Not much, variance is about equal 

in all dimensions



K-means Clustering

cluster 3 cluster 4

cluster 1

cluster 2

1. Input is 

still a matrix 

of features:

2. Output is a 

list of cluster 

“centroids”:

3. From this we can 

describe each point in X 

by its cluster membership:

f = [0,0,1,0]
f = [0,0,0,1]



Hierarchical clustering

Q: What if our clusters are hierarchical?

Level 1

Level 2



Hierarchical clustering

Q: What if our clusters are hierarchical?

Level 1

Level 2



Hierarchical clustering

[0,1,0,0,0,0,0,0,0,0,0,0,0,0,1]

[0,1,0,0,0,0,0,0,0,0,0,0,0,0,1]

[0,1,0,0,0,0,0,0,0,0,0,0,0,1,0]

[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0]
[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0]

[0,0,1,0,0,0,0,0,0,0,1,0,0,0,0]

membership @

level 2

membership @

level 1

A: We’d like a representation that encodes that points 

have some features in common but not others

Q: What if our clusters are hierarchical?



Hierarchical clustering

Hierarchical (agglomerative) clustering

works by gradually fusing clusters whose 

points are closest together

Assign every point to its own cluster:

Clusters = [[1],[2],[3],[4],[5],[6],…,[N]]

While len(Clusters) > 1:

Compute the center of each cluster

Combine the two clusters with the nearest centers



Example



Hierarchical clustering

If we keep track of the order in which 

clusters were merged, we can build a 

“hierarchy” of clusters

1 2 43 6 875

43 6 7

6 75

6 75 8

432

4321

6 75 84321

(“dendrogram”)



Hierarchical clustering

Splitting the dendrogram at different 

points defines cluster “levels” from which 

we can build our feature representation

1 2 43 6 875

43 6 7

6 75

6 75 8

432

4321

6 75 84321

Level 1

Level 2

Level 3

1: [0,0,0,0,1,0]

2: [0,0,1,0,1,0]

3: [1,0,1,0,1,0]

4: [1,0,1,0,1,0]

5: [0,0,0,1,0,1]
6: [0,1,0,1,0,1]

7: [0,1,0,1,0,1]

8: [0,0,0,0,0,1]

L1, L2, L3



Model selection

• Q: How to choose K in K-means?
(or:

• How to choose how many PCA dimensions to keep?

• How to choose at what position to “cut” our 

hierarchical clusters?

• (later) how to choose how many communities to 

look for in a network)



Model selection

1) As a means of “compressing” our data
• Choose however many dimensions we can afford to 

obtain a given file size/compression ratio

• Keep adding dimensions until adding more no longer 

decreases the reconstruction error significantly

# of dimensions

M
S
E



Model selection

2) As a means of generating potentially 

useful features for some other predictive 

task (which is what we’re more interested 

in in a predictive analytics course!)
• Increasing the number of dimensions/number of 

clusters gives us additional features to work with, i.e., a 

longer feature vector

• In some settings, we may be running an algorithm 

whose complexity (either time or memory) scales with 

the feature dimensionality (such as we saw last week!); 

in this case we would just take however many 

dimensions we can afford



Model selection

• Otherwise, we should choose however many 

dimensions results in the best prediction performance 

on held out data

# of dimensions

M
S
E
 (
o

n
 t

ra
in

in
g

 s
e
t)

# of dimensionsM
S
E
 (
o

n
 v

a
li

d
a
ti

o
n

 s
e
t)



Questions?

Further reading:
• Ricardo Gutierrez-Osuna’s PCA slides (slightly more 

mathsy than mine):
http://research.cs.tamu.edu/prism/lectures/pr/pr_l9.pdf

• Relationship between PCA and K-means:
http://ranger.uta.edu/~chqding/papers/KmeansPCA1.pdf

http://ranger.uta.edu/~chqding/papers/Zha-Kmeans.pdf

http://ranger.uta.edu/~chqding/papers/KmeansPCA1.pdf
http://ranger.uta.edu/~chqding/papers/Zha-Kmeans.pdf


Community detection versus clustering

So far we have seen methods 

to reduce the dimension of 

points based on their features



Community detection versus clustering

So far we have seen methods 

to reduce the dimension of 

points based on their features

What if points are not defined 

by features but by their 

relationships to each other?



Community detection versus clustering

Q: how can we compactly represent 

the set of relationships in a graph?



Community detection versus clustering

A: by representing the nodes in terms 

of the communities they belong to



Community detection

(from previous lecture)

communities

f = [0,0,0,1] (A,B,C,D)

e.g. from a PPI network; Yang, McAuley, & Leskovec (2014)

f = [0,0,1,1] (A,B,C,D)



Community detection versus clustering

Part 1 – Clustering

Group sets of points based on 

their features

Part 2 – Community detection

Group sets of points based on 

their connectivity

Warning: These are rough distinctions that don’t cover all cases. E.g. if 

I treat a row of an adjacency matrix as a “feature” and run hierarchical 

clustering on it, am I doing clustering or community detection?



Community detection

How should a “community” be defined?



Community detection

How should a “community” be defined?

1. Members should be connected

2. Few edges between communities

3. “Cliqueishness”

4. Dense inside, few edges outside



Today

1. Connected components
(members should be connected)

2. Minimum cut
(few edges between communities)

3.   Clique percolation
(“cliqueishness”)

4. Network modularity
(dense inside, few edges outside)



1. Connected components

Define communities in terms of sets of 

nodes which are reachable from each other

• If a and b belong to a strongly connected component then 

there must be a path from a → b and a path from b → a

• A weakly connected component is a set of nodes that 

would be strongly connected, if the graph were undirected



1. Connected components

• Captures about the roughest notion of 

“community” that we could imagine

• Not useful for (most) real graphs: 

there will usually be a “giant 

component” containing almost all 

nodes, which is not really a 

community in any reasonable sense



2. Graph cuts

e.g. “Zachary’s Karate Club” (1970)

Picture from http://spaghetti-os.blogspot.com/2014/05/zacharys-karate-club.html

What if the separation between 

communities isn’t so clear?

instructor

club president

http://spaghetti-os.blogspot.com/2014/05/zacharys-karate-club.html


2. Graph cuts

http://networkkarate.tumblr.com/

Aside: Zachary’s Karate Club Club

http://networkkarate.tumblr.com/


2. Graph cuts

Cut the network into two partitions 

such that the number of edges 

crossed by the cut is minimal

Solution will be degenerate – we need additional constraints



2. Graph cuts

We’d like a cut that favors large

communities over small ones

Proposed set of communities

#of edges that separate c from the rest of the network

size of this community



2. Graph cuts

What is the Ratio Cut cost of the 

following two cuts?



2. Graph cuts

But what about…



2. Graph cuts

Maybe rather than counting all 

nodes equally in a community, we 

should give additional weight to 

“influential”, or high-degree nodes

nodes of high degree will have more influence in the denominator



2. Graph cuts

What is the Normalized Cut cost of 

the following two cuts?



2. Graph cuts

>>> Import networkx as nx

>>> G = nx.karate_club_graph()

>>> c1 = [1,2,3,4,5,6,7,8,11,12,13,14,17,18,20,22]

>>> c2 = [9,10,15,16,19,21,23,24,25,26,27,28,29,30,31,32,33,34]

>>> Sum([G.degree(v-1) for v in c1])

76

>>> sum([G.degree(v-1) for v in c2])

80

Nodes are indexed from 0 in the networkx dataset, 1 in the figure

Code:



2. Graph cuts

So what actually happened?

• = Optimal cut

• Red/blue = actual split



Normalized cuts in Computer Vision

“Normalized Cuts and Image Segmentation”

Shi and Malik, 1998



Disjoint communities

Graph data from Adamic (2004). Visualization from allthingsgraphed.com

Separating networks into disjoint 

subsets seems to make sense when 

communities are somehow “adversarial”

E.g. links between democratic/republican political blogs

(from Adamic, 2004)



Social communities

But what about communities in 

social networks (for example)?

e.g. the graph of my facebook friends:

http://jmcauley.ucsd.edu/cse158/data/facebook/egonet.txt

http://jmcauley.ucsd.edu/cse158/data/facebook/egonet.txt


Social communities

Such graphs might have:

• Disjoint communities (i.e., groups of friends who don’t know each other)

e.g. my American friends and my Australian friends

• Overlapping communities (i.e., groups with some intersection)

e.g. my friends and my girlfriend’s friends
• Nested communities (i.e., one group within another)

e.g. my UCSD friends and my CSE friends



3. Clique percolation

How can we define an algorithm that 

handles all three types of community 

(disjoint/overlapping/nested)?

Clique percolation is one such 

algorithm, that discovers communities 

based on their “cliqueishness”



3. Clique percolation

1. Given a clique size K

2. Initialize every K-clique as its own community

3. While (two communities I and J have a (K-1)-clique in common):

4. Merge I and J into a single community

• Clique percolation searches for “cliques” in the 

network of a certain size (K). Initially each of these 

cliques is considered to be its own community

• If two communities share a (K-1) clique in 

common, they are merged into a single community

• This process repeats until no more communities 

can be merged



3. Clique percolation



What is a “good” community algorithm? 

• So far we’ve just defined algorithms to match 

some (hopefully reasonable) intuition of what 

communities should “look like”

• But how do we know if one definition is better 

than another? I.e., how do we evaluate a 

community detection algorithm?

• Can we define a probabilistic model 

and evaluate the likelihood of 

observing a certain set of communities 

compared to some null model



4. Network modularity

Null model:

Edges are equally likely between 

any pair of nodes, regardless of 

community structure

(“Erdos-Renyi random model”)



4. Network modularity

Null model:

Edges are equally likely between 

any pair of nodes, regardless of 

community structure

(“Erdos-Renyi random model”)

Q: How much does a proposed 

set of communities deviate from 

this null model?



4. Network modularity



4. Network modularity

Fraction of 

edges in 

community k

Fraction that we would 

expect if edges were 

allocated randomly



4. Network modularity



4. Network modularity



4. Network modularity

Far fewer edges in 

communities than we would 

expect at random

Far more edges in 

communities than we would 

expect at random



4. Network modularity

Algorithm: Choose communities so that the 

deviation from the null model is maximized

That is, choose communities such that maximally

many edges are within communities and minimally 

many edges cross them

(NP Hard, have to approximate, e.g. choose greedily)



Summary

• Community detection aims to summarize the 

structure in networks
(as opposed to clustering which aims to summarize feature 

dimensions)

• Communities can be defined in various ways, 

depending on the type of network in question
1. Members should be connected (connected components)
2. Few edges between communities (minimum cut)

3. “Cliqueishness” (clique percolation)

4. Dense inside, few edges outside (network modularity)



Assignment 1

Will be discussed next week when we 

introduce Recommender Systems



Questions?

Further reading:
Just on modularity: http://www.cs.cmu.edu/~ckingsf/bioinfo-

lectures/modularity.pdf

Various community detection algorithms, includes spectral formulation 
of ratio and normalized cuts: 

http://dmml.asu.edu/cdm/slides/chapter3.pptx

http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/modularity.pdf
http://dmml.asu.edu/cdm/slides/chapter3.pptx

